Blood component irradiation using linear accelerator, dosimetry and technique
Keywords:
Blood component, TA-GVHD, Linear accelerator in Radiotherapy, Treatment planning systemAbstract
Background: Irradiation is the only proven method of preventing Transfusion-associated graft versus host disease (TA-GVHD) by inactivating T-cell. Using LINAC as a primary machine instead of investing in dedicated radioisotopes or x-ray blood irradiators could be a safe, efficient, and effective use of existing health care resources in LINAC available center.
Objective: To establish a practical method for blood component irradiation using linear accelerator to substitute Cesium-137 or X-ray blood irradiators.
Matherials and Methods: Two types of PMMA containers are designed to facilitate the blood component irradiation using the Varian Clinac IX™ linear accelerator. CT simulations of both boxes contain 4 to 16 blood bags for volumetric calculation. The Varian EclipseTM treatment planning system, version 16, is used for beam angle design and dosimetric planning. Box A uses three fields at angle 0 with a prescribed dose of 20 Gy (to acquire a 25 Gy relative dose). Box B uses two opposing fields with a prescribed dose of 25 Gy at the beam center. The dose statistic was measured and analyzed.
Results: For both types of PMMA containers (Box A and Box B), the percent difference in point dose measurement is less than 5%. The procedure time for Box A and B is 12 and 10 minutes, respectively. Beam-on time is 5.37 and 6.27 minutes, respectively. Methods A1 and A2 of Box A, and methods B3 and B5 of Box B, can achieve a desirable 25Gy volume. Air-gap and inadequate dose build-up could be the factors that affect dose distribution. Adding silicone beads to Box B can improve the dose statistics. Box B method 4 without bolus tissue compensator gets the lowest average dose.
Conclusion: A blood component irradiation using a linear accelerator is implementable in a LINAC available center with a short procedure time compared to a dedicated Cesium-137 or X-ray blood irradiator and can archive doses of up to 25 Gy in 100% volume according to EDQM’s recommendation.
References
Triulzi D, Duquesnoy R, Nichols L, Clark K, Jukic D, et al. Fatal transfusion-associated graft-versus-host disease in an immunocompetent recipient of a volunteer unit of red cells. Transfusion. 2006; 46:885-8.
Dwyre DM, Holland PV. Transfusion-associated graft-versu-host disease. Vox Sang. 2008; 95:85-93.
U.S. Centers for Disease Control and Prevention. The National Healthcare Safety Network (NHSN) Manual: Biovigilance Component v2.5. Atlanta, GA: Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases[online]. 2018 [cited 2022 Feb 20], Available from: http://www.cdc.gov/nhsn/PDFs/Biovigilance/BV-HV-protocol-current.pdf.
Sara R, Christopher AT, Amit G. Chapter 7 - Noninfectious Complications of Transfusion: Adverse Events, Editor(s): Robert W. Maitta, Clinical Principles of Transfusion Medicine, Elsevier.2018; 69-84.
Rühl H, Bein G, Sachs UJ. Transfusion-associated graft-versus-host disease. Transfus Med Rev. 2009; 23:62-71.
Urias EVR, Teles LF, Lula JF, Rocha CU, Pereiraet IA, et al. Leukocyte filters: a review of the mechanisms and applications in hemotherapy. Rev Assoc Med Bras. 2021; 67:1056-1060.
Wortham ST, Ortolano GA, Wenz B. A brief history of blood filtration: clot screens, microaggregate removal, and leukocyte reduction, Transfusion Medicine Reviews. 2003;216-222.
Klein HG. Transfusion-associated graft-versus-host disease: less fresh blood and more gray (Gy) for an aging population. Transfusion. 2006; 46:878-80.
Schroeder ML. Transfusion associated graft versus host disease. 2002; 117:275-87.
Wiersum-Osselton JC, Slomp J, Frederik Falkenburg JH, Geltink T, van Duijnhoven HLP, et al. Guideline development for prevention of transfusion-associated graft-versus-host disease: reduction of indications for irradiated blood components after prestorage leukodepletion of blood components. Br J Haematol 2021; 195:681-688.
Foukaneli, T, Kerr P, Bolton-Maggs PH, Cardigan R, Coles A, et al. and Guidelines on the use of irradiated blood components. Br J Haematol 2020; 191:704-724.
National Advisory Committee on Blood and Blood Products. Recommendations For the Use of Irradiated Blood Components in Canada [online]. 2018 [cited 2022 April 20]; Available from: https://nacblood.ca/sites/default/files/2021-08/Recommendations_Irradiated_Blood_Components.pdf
Sharma RR, Marwaha N. Leukoreduced blood components: Advantages and strategies for its implementation in developing countries. Asian J Transfus Sci 2010; 4:3-8.
Bahar B, Tormey CA. Prevention of Transfusion-Associated Graft-Versus-Host Disease with Blood Product Irradiation: The Past, Present, and Future. Arch Pathol Lab Med. 2018 May; 142:662-667.
Council of Europe, European Directorate for the Quality of Medicines & HealthCare. Guide to the preparation, use and quality assurance of blood components [online]. 2020 [Cited 2022 May 22]; 20:190, Available from: https://www.quotidianosanita.it/allegati/allegato8291904.pdf
Mary MP, Gary M, Naomi LC, Barbara J, Taylor RR. Quinones Effect of gamma irradiation on T-cell inactivation as assessed by limiting dilution Analysis: Implications for Preventing transfusion associated graft vs host disease. Blood. 1994; 83:1683.
Joint United Kingdom Blood Transfusion and Tissue Transplantation Services (UKBTS) Professional Advisory Committee (JPAC). Position Statement: X-ray irradiation of blood components [online]. 2020 [Cited 2022 May 22], Available from: https://www.transfusionguidelines.org/document-library /documents/jpac-position-statement-x-ray-irradiation-of-blood-components-june-2020-pdf/download-file/JPAC%20Position%20Statement%20-%20X ray%20Irradiation%20of%20blood% 20components %20-%20June%202020.pdf
Pinnarò P, Soriani A, D'Alessio D, Giordano C, Foddai ML, et al. Implementation of a new cost efficacy method for blood irradiation using a non-dedicated device. J Exp Clin Cancer Res. 2011; 30:7.
Olivo RA, da Silva MV, Garcia FB, Soares S, Junior VR, et al. Evaluation of the effectiveness of packed red blood cell irradiation by a linear accelerator. Rev Bras Hematol Hemoter. 2015; 37:153-159.
Sujith KM, Sandeep M, Aswathi R. Linear accelerator-based blood irradiation for pediatric oncology practice in limited resource setting: Illumination and innovation. Journal of Clinical Oncology. 2015; 33:15
Shastry S, Ramya B, Ninan J, Srinidhi GC, Bhat SS, et al. Linear accelerator: a reproducible, efficacious and cost-effective alternative for blood irradiation. Transfus Apher Sci. 2013; 49:528-32.
Eric AG, Edward LS, Alex BR. Rossi's Principles of Transfusion Medicine Chapter 60: Transfusion associated graft versus host disease. 2016.
Delaney M, Wendel S, Bercovitz R, Cid J, Cohn C, et al. Transfusion reactions: prevention, diagnosis and treatment. Lancet. 2016; 388:2825-36.
Asai T, Inaba S, Ohto H, Osada K. Guidelines for irradiation of blood and blood components to prevent post transfusion graft-vs-host disease in Japan. Transfusion Medicine. 2000; 10:312-20.
Srisawad J. Prevention of Graft-Versus-Host Disease. J Hematol Transfus Med. 2016; 26:327-329.
Corash L, Lin L. Novel processes for inactivation of leukocytes to prevent transfusion-associated graft-versus-host disease. Bone Marrow Transplantation.2004; 33:1–7.
Pietersz RNI, van der Meer PF, Seghatchian MJ. Update on Leucocyte Depletion of Blood Component by Filtration. Transfus Sci 1998; 19: 321-8.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Thai Association of Radiation Oncology
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของวารสารมะเร็งวิวัฒน์
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับ และบุคคลากรท่านอื่น ๆ ใน สมาคมฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว