การฉายรังสีด้วยลำอนุภาค (Particle beams) I : คุณสมบัติทางฟิสิกส์และชีวรังสี
Abstract
-
References
1. hibmc.shingu.hyogo.jp [Internet]. Hyogo, Japan: Hyogo Ion Beam Medical Center; c 2008. Available from: https://www.hibmc.shingu.hyogo.jp/english/ionbeam.html
2. Brown A, Suit H. The centenary of the discovery of the Bragg peak. Radiother Oncol 2004;73:265–8.
3. Pshenichnov I, Mishustin I, Greiner W. Neutrons from fragmentation of light nuclei in tissue like media: a study with the GEANT4 toolkit. Phys Med Biol 2005;50:5493–507.
4. Daniela S, Oliver J, Wolfgang S. Radiation Therapy With Charged Particles. Semin Radiat Oncol 2006;16:249-59.
5. Lomax AJ, Bortfeld T, Goitein G, Debus J, Dykstra C, Tercier P, et al. A treatment planning inter-comparison of proton and intensity modulated photon radiotherapy. Radiother Oncol 1999;51:257–71.
6. Herman S, Thomas D, Saveli G, Harald P, Ben C, Leo G, et al. Proton vs. carbon ion beams in the definitive radiation treatment of cancer patients. Radiother Oncol 2010;95:3-22.
7. Endo S, Takada M, Onizuka Y, Tanaka K, Maeda N, Ishikawa M, et al. Microdosimetric evaluation of secondary particles in a phantom produced by carbon 290 MeV/nucleon ions at HIMAC. J Radiat Res 2007;48:397–406.
8. Haettner E, Iwase H, Schardt D. Experimental fragmentation studies with 12C therapy beams. Radiat Prot Dosimetry 2006;122:485–7.
9. Blakely EA, Tobias CA, Yang TC, Smith KC, Lyman JT. Inactivation of human kidney cells by high-energy mono-energetic heavy ion beams. Radiat Res 1979;80:122–60.
10. Kanai T, Endo M, Minohara S, Miyahara N, Koyama-Ito H, Tomura H, et al. Biophysical characteristics of HIMAC clinical irradiation systemfor heavy ion radiation therapy. Int J Rad Oncol BiolPhys 1999;44:201-10.
11. Wroe A, Clasie B, Kooy H, Flanz J, Schulte R, Rosenfeld A. Out-off field dose equivalents delivered by passively scattered therapeutic proton beams for clinically relevant field configurations. Int J Rad Oncol Biol Phys 2009;71:306–13.
12. Wroe A, Rosenfeld A, Schulte R. Out-of field dose equivalents delivered by proton therapy of prostate cancer. Med Phys 2007;34:3449–56.
13. Mesoloras G, Sandison GA, Stewart RD, Farr JB, Hsi WC. Neutron scattered dose equivalent to a fetus from proton radiotherapy of the mother. Med Phys 2006;33:2479–90.
14. Yonai S, Matsufuji N, Kanai T, Matsui Y, Matsushita K, Yamashita H, et al. Measurement of neutron ambient dose equivalent in passive carbon-ion and proton radiotherapies. Med Phys 2008;35:4782–92.
15. Schneider U, Agosteo S, Pedroni E, Besserer J. Secondary neutron dose during proton therapy using spot scanning. Int J Radiat Oncol Biol Phys 2002;53:244–51.
16. Tsujii H, Minohara S, Noda K. Heavy particle radiation therapy: system design and application. Reviews of Accelerator Science and Technology 2009;2:93–110.
17. Weber U, Kraft G. Comparison of carbon ions vs protons. He Cancer J 2009;15:325–32.
18. International Atomic Energy Agency. Radiation Biology: A Handbook For Teachers and Students. Training Course Series No. 42. Austria: International Atomic Energy Agency Vienna International Centre; 2010. Available from: https://www-pub.iaea.org/MTCD/publications/PDF/TCS-42_web.pdf
19. Warenius H, Britten RA, Peacock JH. The relative cellular radiosensitivity of 30 human in vitro cell lines of different histological type to high LET 62.5 MeV (p→Be+) fast neutrons and 4 MeV photons. Radiother Oncol 1994;30:83–9.
20. Suzuki M, Kase Y, Yamaguchi H, Kanai T, Ando K. Relative biological effectiveness for cell killing effect on various human cell lines irradiated with heavy-ion medical accelerator in Chiba (HIMAC) carbon ion beams. Int J Rad Oncol Biol Phys 2000;48:241–50.
21. Ando K, Kase Y. Biological characteristics of carbon-ion therapy. Int J RadiatBiol 2009;85:715–28.
22. Ando K, Koike S, Uzawa A, Takai N, Fukawa T, Furusawa Y, et al. Biological gain of carbon-ion radiotherapy for the early response of tumor growth delay and against early response of skin reaction in mice. J Radiat Res 2005;46:51–7.
23. Ando K, Yoshida Y. Tissue -and LET- dependent effects of hypofractionated carbon-ion beams. 49th Annual Meeting of the Particle Therapy Co-Operative Group; 2010 May 18; Makuhari Messe, Japan. Available from: https://ptcog.web.psi.ch/PTCOG49/presentationsEW/18-1-4Rev_Hypofrac.pdf
24. Weyrather WK, Ritter S, Scholz M, Kraft G. RBE for carbon track-segmented irradiation in cell lines of differing repair capacity. Int J Radiat Biol 1999;75:1357–64.
25. Furusawa Y, Fukutsu K, Aoki M, Itsukaichi H, Eguchi-Kasai K, Ohara H, et al. Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated 3HE-,12C-, and 20Ne-ion beams. Radiat Res 2000;154:485–96.
26. Karger CP, Peschke P, Sanchez-Brandelik R, Scholz M, Debus J. Radiation tolerance of the rat spinal cord after 6 and 18 fractions of photons and carbon ions: experimental results and clinical implications. Int J Rad Oncol Biol Phys 2006;66:1488–97.
27. Robbins ME, Barnes DW, Campling D, Hopewell JW, Knowles JF, Sansom JM, et al. The relative biological effectiveness of fractionated doses of fast neutrons (42 MeVd––Be), for normal tissues in the pig. IV. Effects on renal function. Br J Radiol 1991;64:823–30.
28. Koike S, Ando K, Oohira C, Fukawa T, Lee R, Takai N, et al. Relative biological effectiveness of 290 MeV/u carbon ions for the growth delay of a radioresistant murine fibrosarcoma. J Radiat Res 2002;43:247–55.
29. Hall E, Giacci A. Radiobiology for the radiologist. Sixth edition. Philadelphia: Lippincott Williams and Wilkins; 2006.
30. Raju M. Heavy particle radiotherapy. New York: Academic Press, Inc.; 1980.
2. Brown A, Suit H. The centenary of the discovery of the Bragg peak. Radiother Oncol 2004;73:265–8.
3. Pshenichnov I, Mishustin I, Greiner W. Neutrons from fragmentation of light nuclei in tissue like media: a study with the GEANT4 toolkit. Phys Med Biol 2005;50:5493–507.
4. Daniela S, Oliver J, Wolfgang S. Radiation Therapy With Charged Particles. Semin Radiat Oncol 2006;16:249-59.
5. Lomax AJ, Bortfeld T, Goitein G, Debus J, Dykstra C, Tercier P, et al. A treatment planning inter-comparison of proton and intensity modulated photon radiotherapy. Radiother Oncol 1999;51:257–71.
6. Herman S, Thomas D, Saveli G, Harald P, Ben C, Leo G, et al. Proton vs. carbon ion beams in the definitive radiation treatment of cancer patients. Radiother Oncol 2010;95:3-22.
7. Endo S, Takada M, Onizuka Y, Tanaka K, Maeda N, Ishikawa M, et al. Microdosimetric evaluation of secondary particles in a phantom produced by carbon 290 MeV/nucleon ions at HIMAC. J Radiat Res 2007;48:397–406.
8. Haettner E, Iwase H, Schardt D. Experimental fragmentation studies with 12C therapy beams. Radiat Prot Dosimetry 2006;122:485–7.
9. Blakely EA, Tobias CA, Yang TC, Smith KC, Lyman JT. Inactivation of human kidney cells by high-energy mono-energetic heavy ion beams. Radiat Res 1979;80:122–60.
10. Kanai T, Endo M, Minohara S, Miyahara N, Koyama-Ito H, Tomura H, et al. Biophysical characteristics of HIMAC clinical irradiation systemfor heavy ion radiation therapy. Int J Rad Oncol BiolPhys 1999;44:201-10.
11. Wroe A, Clasie B, Kooy H, Flanz J, Schulte R, Rosenfeld A. Out-off field dose equivalents delivered by passively scattered therapeutic proton beams for clinically relevant field configurations. Int J Rad Oncol Biol Phys 2009;71:306–13.
12. Wroe A, Rosenfeld A, Schulte R. Out-of field dose equivalents delivered by proton therapy of prostate cancer. Med Phys 2007;34:3449–56.
13. Mesoloras G, Sandison GA, Stewart RD, Farr JB, Hsi WC. Neutron scattered dose equivalent to a fetus from proton radiotherapy of the mother. Med Phys 2006;33:2479–90.
14. Yonai S, Matsufuji N, Kanai T, Matsui Y, Matsushita K, Yamashita H, et al. Measurement of neutron ambient dose equivalent in passive carbon-ion and proton radiotherapies. Med Phys 2008;35:4782–92.
15. Schneider U, Agosteo S, Pedroni E, Besserer J. Secondary neutron dose during proton therapy using spot scanning. Int J Radiat Oncol Biol Phys 2002;53:244–51.
16. Tsujii H, Minohara S, Noda K. Heavy particle radiation therapy: system design and application. Reviews of Accelerator Science and Technology 2009;2:93–110.
17. Weber U, Kraft G. Comparison of carbon ions vs protons. He Cancer J 2009;15:325–32.
18. International Atomic Energy Agency. Radiation Biology: A Handbook For Teachers and Students. Training Course Series No. 42. Austria: International Atomic Energy Agency Vienna International Centre; 2010. Available from: https://www-pub.iaea.org/MTCD/publications/PDF/TCS-42_web.pdf
19. Warenius H, Britten RA, Peacock JH. The relative cellular radiosensitivity of 30 human in vitro cell lines of different histological type to high LET 62.5 MeV (p→Be+) fast neutrons and 4 MeV photons. Radiother Oncol 1994;30:83–9.
20. Suzuki M, Kase Y, Yamaguchi H, Kanai T, Ando K. Relative biological effectiveness for cell killing effect on various human cell lines irradiated with heavy-ion medical accelerator in Chiba (HIMAC) carbon ion beams. Int J Rad Oncol Biol Phys 2000;48:241–50.
21. Ando K, Kase Y. Biological characteristics of carbon-ion therapy. Int J RadiatBiol 2009;85:715–28.
22. Ando K, Koike S, Uzawa A, Takai N, Fukawa T, Furusawa Y, et al. Biological gain of carbon-ion radiotherapy for the early response of tumor growth delay and against early response of skin reaction in mice. J Radiat Res 2005;46:51–7.
23. Ando K, Yoshida Y. Tissue -and LET- dependent effects of hypofractionated carbon-ion beams. 49th Annual Meeting of the Particle Therapy Co-Operative Group; 2010 May 18; Makuhari Messe, Japan. Available from: https://ptcog.web.psi.ch/PTCOG49/presentationsEW/18-1-4Rev_Hypofrac.pdf
24. Weyrather WK, Ritter S, Scholz M, Kraft G. RBE for carbon track-segmented irradiation in cell lines of differing repair capacity. Int J Radiat Biol 1999;75:1357–64.
25. Furusawa Y, Fukutsu K, Aoki M, Itsukaichi H, Eguchi-Kasai K, Ohara H, et al. Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated 3HE-,12C-, and 20Ne-ion beams. Radiat Res 2000;154:485–96.
26. Karger CP, Peschke P, Sanchez-Brandelik R, Scholz M, Debus J. Radiation tolerance of the rat spinal cord after 6 and 18 fractions of photons and carbon ions: experimental results and clinical implications. Int J Rad Oncol Biol Phys 2006;66:1488–97.
27. Robbins ME, Barnes DW, Campling D, Hopewell JW, Knowles JF, Sansom JM, et al. The relative biological effectiveness of fractionated doses of fast neutrons (42 MeVd––Be), for normal tissues in the pig. IV. Effects on renal function. Br J Radiol 1991;64:823–30.
28. Koike S, Ando K, Oohira C, Fukawa T, Lee R, Takai N, et al. Relative biological effectiveness of 290 MeV/u carbon ions for the growth delay of a radioresistant murine fibrosarcoma. J Radiat Res 2002;43:247–55.
29. Hall E, Giacci A. Radiobiology for the radiologist. Sixth edition. Philadelphia: Lippincott Williams and Wilkins; 2006.
30. Raju M. Heavy particle radiotherapy. New York: Academic Press, Inc.; 1980.
Downloads
Published
2019-11-05
How to Cite
1.
จงเสถียรธรรม ศ, เลิศสงวนสินชัย ป. การฉายรังสีด้วยลำอนุภาค (Particle beams) I : คุณสมบัติทางฟิสิกส์และชีวรังสี. J Thai Assn of Radiat Oncol [Internet]. 2019 Nov. 5 [cited 2024 Nov. 15];20(2):14-22. Available from: https://he01.tci-thaijo.org/index.php/jtaro/article/view/224168
Issue
Section
Review articles
License
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของวารสารมะเร็งวิวัฒน์
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับ และบุคคลากรท่านอื่น ๆ ใน สมาคมฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว