อิทธิพลของปัจจัยภายใน และรูปแบบของการรักษาต่อระดับความสามารถด้านการเดินในผู้ป่วยบาดเจ็บไขสันหลัง
คำสำคัญ:
การฟื้นตัวของการเดิน, ปัจจัยพยากรณ์โรค, การฝึกฟื้นฟู, กายภาพบำบัดบทคัดย่อ
การบาดเจ็บไขสันหลัง (Spinal cord injury) เป็นภาวะที่ก่อให้เกิดความเสียหายต่อโครงสร้างภายในช่องระหว่างกระดูกสันหลังซึ่งอาจเกิดจากอุบัติเหตุ หรือเหตุการณ์อื่นที่ไม่ใช่การบาดเจ็บ โดยความเสียหายที่เกิดขึ้นจะส่งผลให้เกิดความบกพร่องของระบบประสาทรับความรู้สึกและระบบประสาทยนต์ ซึ่งทำให้ความสามารถในการควบคุมการเคลื่อนไหวลดลง โดยเฉพาะอย่างยิ่งการทำงานที่ซับซ้อน เช่น การเดิน ดังนั้นการฟื้นตัวของการเดินจึงขึ้นอยู่กับปัจจัยภายในหลายประการ รวมถึงรูปแบบการฟื้นฟูที่ได้รับด้วย โดยบทความนี้ชี้ให้เห็นว่าปัจจัยภายในบางชนิดส่งผลอย่างมีนัยสำคัญต่อการฟื้นฟูความสามารถในการเดิน โดยบทความนี้ได้บ่งชี้ให้เห็นว่า อายุ ระดับความรุนแรงของการบาดเจ็บไขสันหลัง อาการทางคลินิก ความแข็งแรงของกล้ามเนื้อ การฟื้นตัวของปฏิกิริยาการตอบสนองอัตโนมัติ (deep plantar reflex) การฟื้นตัวของระบบประสาทรับความรู้สึก และการกลัวการล้ม นั้นมีอิทธิผลต่อการฟื้นตัวของการเดินในผู้ป่วยบาดเจ็บไขสันหลัง ในทางตรงกันข้าม เพศ และความตึงตัวของกล้ามเนื้อสูงยังไม่สามารถระบุได้แน่ชัดว่ามีผลเชิงบวกหรือไม่ในผู้ป่วยกลุ่มนี้ แต่สาเหตุของการเกิดภาวะบาดเจ็บของไขสันหลังนั้นไม่ส่งผลการฟื้นตัวของความสามารถด้านการเดินในผู้ป่วยกลุ่มนี้ นอกจากนี้ รูปแบบของการรักษาและฟื้นฟูยังมีบทบาทสำคัญต่อการฟื้นตัวของการเดินอีกด้วย โดยในบทความฉบับนี้แนะนำให้แพทย์ และนักกายภาพบำบัดปรับแต่งรูปแบบของการฝึกตามความสามารถของผู้ป่วย โดยควรเน้นให้การฝึกนั้นจำเพาะต่อการเดิน หากการฝึกเดินกระทำได้ยาก ควรแบ่งรูปแบบการฝึกออกเป็นส่วนย่อย ๆ และฝึกสิ่งนั้นให้ผู้ป่วยเชี่ยวชาญ (part-task practice) หลังจากนั้นจึงนำมาประกอบเป็นการเคลื่อนไหวเต็มรูปแบบที่ต้องการ (whole-task practice) และ รูปแบบของการฝึกควรที่จะหลากหลายและใกล้เคียงกับสิ่งแวดล้อมที่ผู้ป่วยจะต้องกลับไปใช้ชีวิต ดังนั้นบทความฉบับนี้น่าจะเป็นประโยชน์ในการใช้เป็นข้อมูลเพื่อประกอบเป็นแนวทางในการตัดสินใจเกี่ยวกับระยะเวลาในการพักรักษาตัว การพยากรณ์โรค และการเลือกรูปแบบการฟื้นฟูที่เหมาะสมแก่นักวิชาชีพทางสุขภาพที่เกี่ยวข้อง
เอกสารอ้างอิง
Sisto S, Druin E, Sliwinski M. Spinal cord injuries: management and rehabilitation. 1st ed. St. Louis: Mosby, 2009.
Lu Y, Shang Z, Zhang W, et al. Global, regional, and national burden of spinal cord injury from 1990 to 2021 and projections for 2050: A systematic analysis for the Global Burden of Disease 2021 study. Ageing Res Rev 2025;103:102598. doi:10.1016/j.arr.2024.102598.
James M, Wade C, Poole J, et al. Spinal cord injury: Epidemiology and clinical features. J Spinal Cord Med 2019;42(1):1-14.
van Hedel HJ, Wirz M, Dietz V. Standardized assessment of walking capacity after spinal cord injury: The European network approach. Neurol Res 2008;30(1):61-73. doi:10.1179/016164107X230775.
Shumway-Cook A, Woollacott M. Motor Control: Translating Research Into Clinical Practice. 3rd ed. Philadelphia: Lippincott Williams & Wilkins, 2007.
Scivoletto G, Romanelli A, Mariotti A, et al. Clinical factors that affect walking level and performance in chronic spinal cord lesion patients. Spine (Phila Pa 1976) 2008;33(3):259-64. doi:10.1097/BRS.0b013e3181626ab0.
Farooque M, Suo Z, Arnold PM, et al. Gender-related differences in recovery of locomotor function after spinal cord injury in mice. Spinal Cord 2006;44(3):182-7. doi:10.1038/sj.sc.3101816.
Sipski ML, Jackson AB, Gomez-Marin O, et al. Effects of gender on neurologic and functional recovery after spinal cord injury. Arch Phys Med Rehabil 2004;85(11):1826-36. doi:10.1016/j.apmr.2004.04.031.
New PW, Epi MC. Influence of age and gender on rehabilitation outcomes in nontraumatic spinal cord injury. J Spinal Cord Med 2007;30(3):225-37. doi:10.1080/10790268.2007.11753930.
Greenwald BD, Seel RT, Cifu DX, et al. Gender-related differences in acute rehabilitation lengths of stay, charges, and functional outcomes for a matched sample with spinal cord injury: A multicenter investigation. Arch Phys Med Rehabil 2001;82(9):1181-7. doi:10.1053/apmr.2001.24891.
Burns AS, Marino RJ, Flanders AE, et al. Clinical diagnosis and prognosis following spinal cord injury. Handb Clin Neurol 2012;109:47-62. doi:10.1016/B978-0-444-52137-8.00003-6.
van Middendorp JJ, Hosman AJ, Pouw MH, et al. ASIA impairment scale conversion in traumatic SCI: Is it related with the ability to walk? A descriptive comparison with functional ambulation outcome measures in 273 patients. Spinal Cord 2009;47(7):555-60. doi:10.1038/sc.2008.162.
Rupp R, Biering-Sørensen F, Burns SP, et al. International standards for neurological classification of spinal cord injury: Revised 2019. Top Spinal Cord Inj Rehabil 2021;27(2):1-22. doi:10.46292/sci2702-1.
McKinley W, Santos K, Meade M, et al. Incidence and outcomes of spinal cord injury clinical syndromes. J Spinal Cord Med 2007;30(3):215-24. doi:10.1080/10790268.2007.11753929.
Aito S, D'Andrea M, Werhagen L, et al. Neurological and functional outcome in traumatic central cord syndrome. Spinal Cord 2007;45(4):292-7. doi:10.1038/sj.sc.3101944.
Dvorak MF, Fisher CG, Hoekema J, et al. Factors predicting motor recovery and functional outcome after traumatic central cord syndrome: A long-term follow-up. Spine (Phila Pa 1976) 2005;30(20):2303-11. doi:10.1097/01.brs.0000182304.35949.11.
Newey ML, Sen PK, Fraser RD. The long-term outcome after central cord syndrome: a study of the natural history. J Bone Joint Surg Br 2000;82(6):851-5. doi:10.1302/0301-620x.82b6.9866.
Engel-Haber E, Botticello A, Snider B, et al. Incomplete spinal cord syndromes: Current incidence and quantifiable criteria for classification. J Neurotrauma 2022;39(23-24):1687-96. doi:10.1089/neu.2022.0196.
McKinley W, Hills A, Sima A. Posterior cord syndrome: Demographics and rehabilitation outcomes. J Spinal Cord Med 2021;44(2):241-6. doi:10.1080/10790268.2019.1585135.
Rush D, Goins K, Doe K, et al. Functional recovery in Brown-Séquard plus syndrome: A case report. J Case Rep Images Surg. 2022;8(2):15–20. doi:10.5348/100107Z12DR2022CR
Scivoletto G, Tamburella F, Laurenza L, et al. Who is going to walk? A review of the factors influencing walking recovery after spinal cord injury. Front Hum Neurosci 2014;8:141. doi:10.3389/fnhum.2014.00141.
Marinho AR, Flett HM, Craven C, et al. Walking-related outcomes for individuals with traumatic and non-traumatic spinal cord injury inform physical therapy practice. J Spinal Cord Med 2012;35(5):371-81. doi:10.1179/2045772312Y.0000000038.
Scivoletto G, Farchi S, Laurenza L, et al. Traumatic and non-traumatic spinal cord lesions: An Italian comparison of neurological and functional outcomes. Spinal Cord 2011;49(3):391-6. doi:10.1038/sc.2010.85.
Kim CM, Eng JJ, Whittaker MW. Level walking and ambulatory capacity in persons with incomplete spinal cord injury: Relationship with muscle strength. Spinal Cord 2004;42(3):156-62. doi:10.1038/sj.sc.3101569.
Khuna L, Phadungkit S, Thaweewannakij T, et al. Outcomes of the five times sit-to-stand test could determine lower limb functions of ambulatory people with spinal cord injury only when assessed without hands. J Spinal Cord Med 2022;45(3):402-9. doi:10.1080/10790268.2020.1803658.
Saensook W, Mato L, Manimmanakorn N, et al. Amatachaya S. Ability of sit-to-stand with hands reflects neurological and functional impairments in ambulatory individuals with spinal cord injury. Spinal Cord 2018;56(3):232-8. doi:10.1038/s41393-017-0012-8.
Frigon A, Rossignol S. Functional plasticity following spinal cord lesions. Prog Brain Res 2006;157:231-60. doi:10.1016/s0079-6123(06)57016-5.
Michel J, van Hedel HJ, Dietz V. Facilitation of spinal reflexes assists performing but not learning an obstacle-avoidance locomotor task. Eur J Neurosci 2007;26(5):1299-306. doi:10.1111/j.1460-9568.2007.05759.x.
Dietz V. G. Heiner Sell memorial lecture: neuronal plasticity after spinal cord injury: significance for present and future treatments. J Spinal Cord Med 2006;29(5):481-8. doi:10.1080/10790268.2006.11753897.
Lünenburger L, Bolliger M, Czell D, et al. Modulation of locomotor activity in complete spinal cord injury. Exp Brain Res 2006;174(4):638-46. doi:10.1007/s00221-006-0509-4.
Barbeau H, Nadeau S, Garneau C. Physical determinants, emerging concepts, and training approaches in gait of individuals with spinal cord injury. J Neurotrauma 2006;23(3-4):571-85. doi:10.1089/neu.2006.23.571.
Pepin A, Ladouceur M, Barbeau H. Treadmill walking in incomplete spinal-cord-injured subjects: 2. Factors limiting the maximal speed. Spinal Cord 2003;41(5):271-9. doi:10.1038/sj.sc.3101453.
Barbeau H, Norman KE. The effect of noradrenergic drugs on the recovery of walking after spinal cord injury. Spinal Cord 2003;41(3):137-43. doi:10.1038/sj.sc.3101374.
Barbeau H, Ladouceur M, Mirbagheri MM, et al. The effect of locomotor training combined with functional electrical stimulation in chronic spinal cord injured subjects: walking and reflex studies. Brain Res Brain Res Rev 2002;40(1-3):274-91. doi:10.1016/s0165-0173(02)00210-2.
Mirbagheri MM, Ladouceur M, Barbeau H, et al. The effects of long-term FES-assisted walking on intrinsic and reflex dynamic stiffness in spastic spinal-cord-injured subjects. IEEE Trans Neural Syst Rehabil Eng 2002;10(4):280-9. doi:10.1109/TNSRE.2002.806838.
John LT, Cherian B, Babu A. ostural control and fear of falling in persons with low-level paraplegia. J Rehabil Res Dev 2010;47(5):497-502. doi:10.1682/jrrd.2009.09.0150.
Chan K, Habib Perez O, Singh H, et al. Impact of falls and fear of falling on participation, autonomy and life satisfaction in the first year after spinal cord injury. Front Rehabil Sci 2022;3:903097. doi:10.3389/fresc.2022.903097.
Perez OH, Chan K, Martin S, et al. The experience of falls and fall risk during the subacute phase of spinal cord injury: A mixed methods study. Disabil Rehabil 2024;46(17):3937-45. doi:10.1080/09638288.2023.2259311.
Schmidt R, Lee T. Motor control and learning: A behavioral emphasis. 5th ed. Champaign, IL: Human Kinetics, 2011.
Davids K, Glazier P, Araujo D, et al. Bartlett R. Movement systems as dynamical systems: the functional role of variability and its implications for sports medicine. Sports Med 2003;33(4):245-60. doi:10.2165/00007256-200333040-00001.
Patterson MR, Whelan D, Reginatto B, et al. Does external walking environment affect gait patterns? Annu Int Conf IEEE Eng Med Biol Soc 2014;2014:2981-4. doi:10.1109/EMBC.2014.6944249.
Haibach R, Collier D. Motor Learning and Motor Development. 1st ed. Champaign Illinois: Human Kinetics, 2011.
Amatachaya S, Promkeaw D, Arayawichanon P, et al. Various surfaces benefited functional outcomes and fall incidence in individuals with spinal cord injury: A randomized controlled trial with prospective data follow-up. Arch Phys Med Rehabil 2021;102(1):19-26. doi:10.1016/j.apmr.2020.08.009.
Promkeaw D, Arrayawichanon P, Thaweewannakij T, et al. Various surfaces challenge gait characteristics of ambulatory patients with spinal cord injury. Spinal Cord 2019;57(9):805-13. doi:10.1038/s41393-019-0282-4.
Amatachaya S, Nithiatthawanon T, Amatachaya P, et al. Effects of four-week lower limb loading training with and without augmented feedback on mobility, walking device use, and falls among ambulatory individuals with spinal cord injury: A randomized controlled trial. Disabil Rehabil 2023;45(26):4431-9. doi:10.1080/09638288.2022.2152502.
Nithiatthawanon T, Amatachaya P, Thaweewannakij T, et al. Immediate effects of lower limb loading exercise during stepping with and without augmented loading feedback on mobility of ambulatory individuals with spinal cord injury: A single-blinded, randomized, cross-over trial. Spinal Cord 2020;58(12):1301-9. doi:10.1038/s41393-020-0498-3.
Harkema SJ. Neural plasticity after human spinal cord injury: Application of locomotor training to the rehabilitation of walking. Neuroscientist 2001;7(5):455-68. doi:10.1177/107385840100700514.
Cincotta M, Price R. Difficulty walking. In: Cucchiara B, Price R, editors. Decision-making in adult neurology: Elsevier Health Sciences; 2021 p. 66-7.
ดาวน์โหลด
เผยแพร่แล้ว
รูปแบบการอ้างอิง
ฉบับ
ประเภทบทความ
สัญญาอนุญาต
ลิขสิทธิ์ (c) 2025 วารสารการแพทย์และวิทยาศาสตร์สุขภาพ

อนุญาตภายใต้เงื่อนไข Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.