ฤทธิ์ของสารสกัดพืชสมุนไพรกำแพงเจ็ดชั้นต่อการต้านการอักเสบผ่านกลไกการยับยั้ง การหลั่งสารไนตริกออกไซด์ของเซลล์แมคโครฟาจ
คำสำคัญ:
กำแพงเจ็ดชั้น, การอักเสบ, ไนตริกออกไซด์, เซลล์แมคโครฟาจบทคัดย่อ
บทคัดย่อ
กำแพงเจ็ดชั้น (Salacia chinensis L.) จัดเป็นพืชสมุนไพรที่สามารถพบได้ทั่วทุกภาคในประเทศไทย มีสรรพคุณทางยาในการรักษาและบรรเทาอาการของโรคที่เกี่ยวข้องกับการอักเสบอย่างแพร่หลาย เช่น โรคหืด มะเร็ง และเบาหวาน เป็นต้น อย่างไรก็ตาม กลไกการออกฤทธิ์ในการบรรเทาอาการอักเสบที่เกิดขึ้นดังกล่าว ของกำแพงเจ็ดชั้นนั้นยังไม่ทราบแน่ชัด ดังนั้น คณะผู้วิจัยจึงมีความสนใจที่จะศึกษาฤทธิ์ต้านการอักเสบของ กำแพงเจ็ดชั้นผ่านการหลั่งสารไนตริกออกไซด์ของเซลล์เพาะเลี้ยงแมคโครฟาจ RAW 264.7 ที่ถูกกระตุ้นด้วย ไลโพโพลีแซคคาไรด์ โดยทำการสกัดสารจากเนื้อไม้กำแพงเจ็ดชั้นด้วยเมทานอลและน้ำกลั่น จากนั้นทดสอบ ความเป็นพิษและความสามารถในการยับยั้งการหลั่งสารไนตริกออกไซด์ของเซลล์แมคโครฟาจด้วยวิธี trypan blue exclusion และ Griess reaction assay ตามลำดับ ผลการศึกษาพบว่า สารในกำแพงเจ็ดชั้น ที่สกัดออกมาด้วยเมทานอลและน้ำกลั่นไม่ส่งผลต่อความมีชีวิตของเซลล์ อีกทั้งสารสกัดกำแพงเจ็ดชั้น ที่สกัดด้วยเมทานอลและน้ำกลั่นในทุกๆ ความเข้มข้น (100, 200 และ 400 µg/mL) สามารถยับยั้งการหลั่ง สารไนตริกออกไซด์ของเซลล์แมคโครฟาจที่ถูกกระตุ้นด้วยไลโพโพลีแซคคาไรด์ได้ตามระดับความเข้มข้นของ สารสกัดอย่างมีนัยสำคัญทางสถิติ (p<0.05) โดยสารที่ทำหน้าที่ออกฤทธิ์ในการยับยั้งการหลั่งสารไนตริกออกไซด์ ดังกล่าวของกำแพงเจ็ดชั้นอาจจะต้องมีการศึกษาเพิ่มเติมต่อไป
เอกสารอ้างอิง
2. Poonthananiwatkul B, Lim RH, Howard RL, et al. Traditional medicine use by cancer patients in Thailand. J Ethnopharmacol 2015;168:100-7.
3. Morikawa T, Akaki J, Ninomiya K, et al. Salacinol and related analogs: new leads for type 2 diabetes therapeutic candidates from the Thai traditional natural medicine
Salacia chinensis. Nutrients 2015;7:1480-93.
4. Singh RG, Rathore SS, Kumar R, et al.Nephroprotective role of salacia chinensis in diabetic CKD patients: a pilot study. Indian J Med Sci 2010;64:378-84.
5. Sellamuthu PS, Arulselvan P, Muniappan BP, et al. Mangiferin from Salacia chinensis prevents oxidative stress and protects pancreatic beta-cells in streptozotocininduced diabetic rats. J Med Food 2013;16:719-27.
6. Shirakawa J, Arakawa S, Tagawa T, et al. Salacia chinensis L. extract ameliorates abnormal glucose metabolism and improves the bone strength and accumulation of AGEs in type 1 diabetic rats. Food Funct 2016;7:2508-15.
7. Ghadage DM, Kshirsagar PR, Pai SR, et al. Extraction efficiency, phytochemical profiles and antioxidative properties of different parts of Saptarangi (Salacia
chinensis L.) - An important underutilized plant. Biochem Biophys Rep 2017;12:79-90.
8. Coleman JW. Nitric oxide in immunity and inflammation. Int Immunopharmacol 2001;1:1397-406.
9. Guzik TJ, Korbut R, Adamek-Guzik T. Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol 2003;54:469-87.
10. Korhonen R, Lahti A, Kankaanranta H, et al. Nitric oxide production and signaling in inflammation. Curr Drug Targets Inflamm Allergy 2005;4:471-9.
11. Vonkeman HE, van de Laar MA. Nonsteroidal anti-inflammatory drugs: adverse effects and their prevention. Semin Arthritis Rheum 2010;39:294-312.
12. Bessone F. Non-steroidal antiinflammatory drugs: What is the actual risk of liver damage? World J Gastroenterol 2010;16:5651-61.
13. Day RO, Graham GG. Non-steroidal anti-inflammatory drugs (NSAIDs). BMJ 2013;346:f3195.
14. Sostres C, Gargallo CJ, Lanas A. Nonsteroidal anti-inflammatory drugs and upper and lower gastrointestinal mucosal damage. Arthritis Res Ther 2013;15 Suppl 3:S3.
15. Ngo T, Scarlett CJ, Bowyer MC, et al. Impact of Different Extraction Solvents on Bioactive Compounds and Antioxidant Capacity from the Root ofSalacia chinensis L. J Food Quality 2017.
16. Chavan JJ, Jagtap UB, Gaikwad NB, et al. Total phenolics, flavonoids and antioxidant activity of Saptarangi (Salacia chinensis L.) fruit pulp. Plant Biochem Biot 2013;22:409-13.
17. Zhang A, Wan L, Wu C, et al. Simultaneous determination of 14 phenolic compounds in grape canes by HPLC-DAD-UV using wavelength switching detection.Molecules 2013;18:14241-57.
18. Mu MM, Chakravortty D, Sugiyama T, et al. The inhibitory action of quercetin on lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophage cells. J Endotoxin Res 2001;7:431-8.
19. Kiemer AK, Muller C, Vollmar AM. Inhibition of LPS-induced nitric oxide and TNF-alpha production by alpha-lipoic acid in rat Kupffer cells and in RAW 264.7 murine macrophages. Immunol Cell Biol 2002;80:550-7.
20. Lin HY, Juan SH, Shen SC, et al. Inhibition of lipopolysaccharide-induced nitric oxide production by flavonoids in RAW 264.7 macrophages involves heme oxygenase-1.
Biochem Pharmacol 2003;66:1821-32.
21. Oh GS, Pae HO, Lee BS, et al. Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappaB via heme oxygenase-1 expression in RAW 264.7 m a c r o p h a g e s s t i m u l a t e d w i t h lipopolysaccharide. Free Radic Biol Med 2006;41:106-19.
22. Colliver BB, Stephenson T. Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers. Biotechnol Adv 2000;18:219-32.
23. Wink DA, Miranda KM, Espey MG, et al. Mechanisms of the antioxidant effects of nitric oxide. Antioxid Redox Signal 2001;3:203-13.
24. Ridnour LA, Thomas DD, Mancardi D, et al. The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. Biol Chem 2004;385:1-10.
25. Fujiwara N, Kobayashi K. Macrophages in inflammation. Curr Drug Targets Inflamm Allergy 2005;4:281-6.
26. Wynn TA, Barron L. Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis 2010;30:245-57.
27. Oishi Y, Manabe I. Macrophages in inflammation, repair and regeneration. Int Immunol 2018;30:511-28.
28. Shrivastava AK, Pandey A. Inflammation and rheumatoid arthritis. J Physiol Biochem 2013;69:335-47.
29. Lontchi-Yimagou E, Sobngwi E, Matsha TE, et al. Diabetes mellitus and inflammation. Curr Diab Rep 2013;13:435-44.
30. Wu MY, Li CJ, Hou MF, et al. New Insights into the Role of Inflammation in the Pathogenesis of Atherosclerosis. Int J Mol Sci 2017;18(10).
31. Aktan F. iNOS-mediated nitric oxide production and its regulation. Life Sci 2004;75:639-53.
32. Robinson MA, Baumgardner JE, Otto CM.Oxygen-dependent regulation of nitric oxide production by inducible nitric oxide synthase. Free Radic Biol Med
2011;51:1952-65.
33. van der Vliet A, Eiserich JP, Cross CE. Nitric oxide: a pro-inflammatory mediator in lung disease? Respir Res 2000;1:67-72.
34. Goligorsky MS, Brodsky SV, Noiri E. Nitric oxide in acute renal failure: NOS versus NOS. Kidney Int 2002;61:855-61.
35. Damy T, Ratajczak P, Shah AM, et al. Increased neuronal nitric oxide synthasederived NO production in the failing human heart. Lancet 2004;363:1365-7.
36. Bertolini A, Ottani A, Sandrini M. Dual acting anti-inflammatory drugs: a reappraisal. Pharmacol Res 2001;44:437-50.
37. Keeble JE, Moore PK. Pharmacology and potential therapeutic applications of nitric oxide-releasing non-steroidal anti-inflammatory and related nitric oxide-donating drugs. Br J Pharmacol 2002;137:295-310.
38. Rainsford KD. Anti-inflammatory drugs in the 21st century. Subcell Biochem 2007;42:3-27.
39. Hinz B, Brune K, Rau T, et al. Flurbiprofen enantiomers inhibit inducible nitric oxide synthase expression in RAW 264.7 macrophages. Pharmaceutical research 2001;18:151-6.
40. Amoruso A, Fresu LG, Dalli J, et al. Characterization of the anti-inflammatory properties of NCX 429, a dual-acting compound releasing nitric oxide and naproxen. Life sciences 2015;126:28-36.