Probiotic Limosilactobacillus reuteri TF7 protects against dyslipidemia and inflammation via modulating gut microbiota in high-fat-diet-induced obese rats
Keywords:
Limosilactobacillus reuteri, probiotics, obesity, dyslipidemia, inflammationAbstract
Dyslipidemia is a condition characterized by abnormally high levels of cholesterol and triglycerides. It has numerous negative health effects, which are partly due to increased levels of oxidative stress and inflammation. The resulting health problems include obesity, diabetes, and non-alcoholic fatty liver disease (NAFLD). Several studies have shown that probiotics are beneficial live microorganisms that can promote overall health and well-being, particularly through their lipid-lowering properties and supportive role in maintaining metabolic balance. Thus, this study aimed to investigate the effects of the probiotic Limosilactobacillus reuteri TF7 on lipid-lowering; inflammatory mediators; antioxidant activities; intestinal local immunity; and gut microbiota balance in high-fat-diet-induced obese rats. The study showed that oral administration of the probiotic resulted in body weight loss, lower blood glucose and lipid levels, and elevated cholesterol-7α-hydroxylase activity. In addition, L. reuteri TF7 reduced liver enzyme levels and pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), which led to decreased liver fat accumulation. The probiotic reduced oxidative stress by boosting antioxidant enzyme production, including superoxide dismutase (SOD) and glutathione peroxidase (GPX). The research demonstrated two approaches to enhancing intestinal local immunity: increased expression of the zonula occludens-1 (ZO-1) protein and reduced expression of TLR proteins. The gut microbiota achieved balance through L. reuteri TF7, which promoted the growth of beneficial bacteria. Our findings indicate that the probiotic strain L. reuteri TF7 has the potential to effectively reduce risk factors associated with dyslipidemia.
References
Mancini GBJ, Hegele RA, Leiter LA. Dyslipidemia. Can J Diabetes 2018;42:S178-85. doi:10.1016/j.jcjd.2017.10.019.
Liao X, Ma Q, Wu T, et al. Lipid-lowering responses to dyslipidemia determine the efficacy on liver enzymes in metabolic dysfunction-associated fatty liver disease with hepatic injuries: A prospective cohort study. Diabetes Metab Syndr Obes 2022;15(null):1173-84. doi:10.2147/DMSO.S356371.
Zhou H, Urso CJ, Jadeja V. Saturated fatty acids in obesity-associated inflammation. J Inflamm Res 2020;13(null):1-14. doi:10.2147/JIR.S229691.
Busch CJ, Binder CJ. Malondialdehyde epitopes as mediators of sterile inflammation. BBA - Molecular and Cell Biology of Lipids 2017;1862(4):398-406. doi:10.1016/j.bbalip.2016.06.016.
Jia X, Xu W, Zhang L, et al. Impact of gut microbiota and microbiota-related metabolites on hyperlipidemia. Front Cell Infect Microbiol 2021;11:634780. doi:10.3389/fcimb.2021.634780.
Flaig B, Garza R, Singh B, et al. Treatment of dyslipidemia through targeted therapy of gut microbiota. Nutrients 2023;15(1):228. doi:10.3390/nu15010228.
Fuke N, Nagata N, Suganuma H, et al. Regulation of gut microbiota and metabolic endotoxemia with dietary factors. Nutrients 2019;11(10). doi:10.3390/nu11102277.
Ramkumar S, Raghunath A, Raghunath S. Statin therapy: Review of safety and potential side effects. Acta Cardiol Sin 2016;32(6):631-9. doi:10.6515/acs20160611a.
Maftei N-M, Raileanu CR, Balta AA, et al. The potential impact of probiotics on human health: an update on their health-promoting properties. Microorganisms 2024;12(2):234. doi:10.3390/microorganisms12020234.
Wang Y, Ai Z, Xing X, et al. The ameliorative effect of probiotics on diet-induced lipid metabolism disorders: a review. Crit Rev Food Sci Nutr 2024;64(11):3556-72. doi:10.1080/10408398.2022.2132377.
Song Z, Cai Y, Lao X, et al. Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome. Microbiome 2019;7(1):9. doi:10.1186/s40168-019-0628-3.
Dronkers TMG, Ouwehand AC, Rijkers GT. Global analysis of clinical trials with probiotics. Heliyon 2020;6(7). doi:10.1016/j.heliyon.2020.e04467.
Khare A, Gaur S. Cholesterol-lowering effects of Lactobacillus species. Curr Microbiol 2020;77(4):638-44. doi:10.1007/s00284-020-01903-w.
Wu Y, Li X, Tan F, et al. Lactobacillus fermentum CQPC07 attenuates obesity, inflammation and dyslipidemia by modulating the antioxidant capacity and lipid metabolism in high-fat diet induced obese mice. J Inflamm 2021;18(1):5. doi:10.1186/s12950-021-00272-w.
Zheng J, Wittouck S, Salvetti E, et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 2020;70(4):2782-858. doi:10.1099/ijsem.0.004107.
Zhou M, Xiao M, Guo H, et al. The alleviating effect of different bile salt hydrolase gene-encoding Limosilactobacillus fermentum strains on hypercholesterolemia in mice. Food Biosci 2025;68:106574. doi:10.1016/j.fbio.2025.106574.
Szczepankowka A, Cukrowska B, Aleksandrzak-Piekarczyk T. Complete genome sequence of Limosilactobacillus reuteri LU150, a potential vitamin B12 producer from the NORDBIOTIC collection. Microbiol Resour Announc 2024;13. doi:10.1128/mra.00800-24.
Li J, Zhang Z, Xu Y, et al. Limosilactobacillus fermentum HNU312 alleviates lipid accumulation and inflammation induced by a high-fat diet: improves lipid metabolism pathways and increases short-chain fatty acids in the gut microbiome. Food Funct 2024;15(17):8878-92. doi:10.1039/d4fo02390k.
Luo Z, Chen A, Xie A, et al. Limosilactobacillus reuteri in immunomodulation: molecular mechanisms and potential applications. Front Immunol 2023;14. doi:10.3389/fimmu.2023.1228754.
Tang M, Li X, Ren J, et al. Limosilactobacillus reuteri HM108 alleviates obesity in rats fed a high-fat diet by modulating the gut microbiota, metabolites, and inhibiting the JAK-STAT signalling pathway. Front Nutr 2025;12 doi:10.3389/fnut.2025.1597334.
Puttarat N, Ladda B, Kasorn A, et al. Cholesterol-lowering activity and functional characterization of lactic acid bacteria isolated from traditional Thai foods for their potential used as probiotics. Songklanakarin J Sci Technol 2021;43(5):1283-91. doi:10.14456/sjst-psu.2021.167.
Puttarat N, Kasorn A, Vitheejongjaroen P, et al. Beneficial effects of indigenous probiotics in high-cholesterol diet-induced hypercholesterolemic rats. Nutrients 2023;15(12). doi:10.3390/nu15122710.
Brunt EM, Kleiner DE, Wilson LA, et al. Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology 2011;53(3):810-20. doi:10.1002/hep.24127.
Geboes K, Riddell R, Ost A, et al. A reproducible grading scale for histological assessment of inflammation in ulcerative colitis. Gut 2000;47(3):404-9. doi:10.1136/gut.47.3.404.
Mazziotta C, Tognon M, Martini F, et al. Probiotics mechanism of action on immune cells and beneficial effects on human health. Cells 2023;12(1). doi:10.3390/cells12010184.
Qiao Y, Sun J, Xia S, et al. Effects of different Lactobacillus reuteri on inflammatory and fat storage in high-fat diet-induced obesity mice model. J Funct Foods 2015;14:424-34. doi:10.1016/j.jff.2015.02.013.
Maulana H, Ridwan A. High-fat diets-induced metabolic disorders to study molecular mechanism of hyperlipidemia in rats. 3BIO 2021;3(2):92-105. doi:10.5614/3bio.2021.3.2.5.
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024;9(1):97. doi:10.1038/s41392-024-01811-6.
Heeren J, Scheja L. Metabolic-associated fatty liver disease and lipoprotein metabolism. Mol Metab 2021;50:101238. doi:10.1016/j.molmet.2021.101238.
McGill MR. The past and present of serum aminotransferases and the future of liver injury biomarkers. EXCLI J 2016;15:817-28. doi:10.17179/excli2016-800.
Duan Y, Pan X, Luo J, et al. Association of inflammatory cytokines with non-alcoholic fatty liver disease. Front Immunol 2022;13. doi:10.3389/fimmu.2022.880298.
Huang Y, Chen H, Liu Q, et al. Obesity difference on association blood malondialdehyde level and diastolic hypertension in the elderly population: a cross-sectional analysis. Eur J Med Res 2023;28(1):44. doi:10.1186/s40001-022-00983-7.
Averina OV, Poluektova EU, Marsova MV, et al. Biomarkers and utility of the antioxidant potential of probiotic lactobacilli and bifidobacteria as representatives of the human gut microbiota. Biomedicines 2021;9(10):1340. doi:10.3390/biomedicines9101340.
Alkushi AG, Elazab ST, Abdelfattah-Hassan A, et al. Multi-strain-probiotic-loaded nanoparticles reduced colon inflammation and orchestrated the expressions of tight junction, NLRP3 inflammasome and caspase-1 genes in DSS-induced colitis model. Pharmaceutics 2022;14(6). doi:10.3390/pharmaceutics14061183.
El-Zayat SR, Sibaii H, Mannaa FA. Toll-like receptors activation, signaling, and targeting: an overview. Bull Natl Res Cent 2019;43(1):187. doi:10.1186/s42269-019-0227-2.
Zhao L, Shen Y, Wang Y, et al. Lactobacillus plantarum S9 alleviates lipid profile, insulin resistance, and inflammation in high-fat diet-induced metabolic syndrome rats. Sci Rep 2022;12(1):15490. doi:10.1038/s41598-022-19839-5.
Lei L, Zhao N, Zhang L, et al. Gut microbiota is a potential goalkeeper of dyslipidemia. Front Endocrinol (Lausanne) 2022;13:950826. doi:10.3389/fendo.2022.950826.
Cuevas-Sierra A, Ramos-Lopez O, Riezu-Boj JI, et al. Diet, gut microbiota, and obesity: Links with host genetics and epigenetics and potential applications. Adv Nutr 2019;10(suppl_1):S17-30. doi:10.1093/advances/nmy078.
Kameyama K, Itoh K. Intestinal colonization by a Lachnospiraceae bacterium contributes to the development of diabetes in obese mice. Microbes Environ 2014;29(4):427-30. doi:10.1264/jsme2.ME14054.
Villaseñor-Aranguren M, Rosés C, Riezu-Boj JI, et al. Association of the gut microbiota with the host's health through an analysis of biochemical markers, dietary estimation, and microbial composition. Nutrients 2022;14(23). doi:10.3390/nu14234966.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Medicine and Health Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.