Blood RNA expression of HSP70, GADD45a, and PA2G4 following somatic death in a mouse model for application in post-mortem interval estimation
Keywords:
post-mortem interval, gene expression, mouse model, HSP70, GADD45aAbstract
Current tools for post-mortem interval (PMI) estimation include algor mortis, livor mortis, rigor mortis, and supravital reactions. However, the accuracy of these methods can be influenced by external environmental factors and the characteristics of the deceased body. To enhance precision, several studies have explored gene expression-based tools, as specific genes may exhibit upregulation or downregulation correlated with the time since death. This study aimed to investigate the use of postmortem blood RNA expression for PMI estimation. Heart blood samples were collected at 0, 0.5, 1, 6, 12, 24, and 48 hours postmortem. Total RNA was extracted, and gene expression was analyzed using quantitative real-time polymerase chain reaction (qRT-PCR). Results revealed that RNA quality and quantity for samples collected at 0, 0.5, and 1 hour postmortem ranged from 2.04 to 2.23 (A260/A280) and 30.16 to 44.67 µg/ml, respectively. Notably, the expression of HSP70 was significantly elevated at 0.5 hours postmortem, while the expression of GADD45a significantly decreased at 0.5 hours postmortem. Moreover, a significant association was observed between PMI and changes in delta cycle time for HSP70 (increase) and GADD45a (decrease). These findings suggest that HSP70 and GADD45a may serve as potential biomarkers for PMI estimation. However, further studies are required to validate the use of these genes in human postmortem samples for accurate and reliable PMI determination.
References
Mathur A, Agrawal Y. An overview of methods used for estimation of time since death. Aust J Forensic Sci 2011;43:275-85. doi:10.1080/00450618.2011.568970.
Noshy PA. Postmortem expression of apoptosis-related genes in the liver of mice and their use for estimation of the time of death. Int J Legal Med 2021;135:539-45. doi:10.1007/s00414-020-02419-5.
Kim JY, Kim Y, Cha HK, et al. Cell deathassociated ribosomal RNA cleavage in postmortem tissues and its forensic applications. Mol Cells 2017;40:410-7. doi:10.14348/molcells.2017.0039.
Dachet F, Brown JB, Valyi-Nagy T, et al. Selective time-dependent changes in activity and cell-specific gene expression in human postmortem brain. Sci Rep 2021;11:6078. doi:10.1038/s41598-021-85801-6.
Pozhitkov AE, Neme R, Domazet-Lošo T, et al. Thanatotranscriptome: Genes actively expressed after organismal death. BioRxiv 2016:058305.
Nylandsted J, Gyrd-Hansen M, Danielewicz A, et al. Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med 2004;200:425-35. doi:10.1084/jem.20040531.
Albakova Z, Armeev GA, Kanevskiy LM, et al. HSP70 multi-functionality in cancer. Cells 2020;9:587. doi:10.3390/cells9030587.
Stetler RA, Gan Y, Zhang W, et al. Heat shock proteins: Cellular and molecular mechanisms in the central nervous system. Prog Neurobiol 2010;92:184-211. doi:10.1016/j.pneurobio.2010.05.002.ฃ
Sanoudou D, Kang PB, Haslett JN, et al. Transcriptional profile of postmortem skeletal muscle. Physiol Genomics 2004;16:222-8. doi:10.1152/physiolgenomics.00137.2003.
Moskalev AA, Smit-McBride Z, Shaposhnikov MV, et al. Gadd45 proteins: Relevance to aging, longevity and age-related pathologies. Ageing Res Rev 2012;11:51-66. doi:10.1016/j.arr.2011.09.003.
Stevenson BW, Gorman MA, Koach J, et al. A structural view of PA2G4 isoforms with opposing functions in cancer. J Biol Chem 2020;295:16100-12. doi:10.1074/jbc.REV120.014293.
Bauer M, Gramlich I, Polzin S, et al. Quantification of mRNA degradation as possible indicator of postmortem interval--a pilot study. Leg Med (Tokyo) 2003;5:220-7. doi:10.1016/j.legalmed.2003.08.001.
Ehrenfellner B, Zissler A, Steinbacher P, et al. Are animal models predictive for human postmortem muscle protein degradation? Int J Legal Med 2017;131:1615-21. doi:10.1007/s00414-017-1643-1.
Lv YH, Ma JL, Pan H, et al. Estimation of the human postmortem interval using an established rat mathematical model and multi-RNA markers. Forensic Sci Med Pathol 2017;13:20-7. doi:10.1007/s12024-016-9827-4.
Black AT, Hayden PJ, Casillas RP, et al. Regulation of Hsp27 and Hsp70 expression in human and mouse skin construct models by caveolae following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide.Toxicol Appl Pharmacol 2011;253:112-20. doi:10.1016/j.taap.2011.03.015.
Zhang Y, Lu Y, Zhou H, et al. Alterations in cell growth and signaling in ErbB3 binding protein-1 (Ebp1) deficient mice. BMC Cell Biol 2008;9:69. doi:10.1186/1471-2121-9-69.
Hong L, Sun QF, Xu TY, et al. New role and molecular mechanism of Gadd45a in hepatic fibrosis. World J Gastroenterol 2016;22:2779-88. doi:10.3748/wjg.v22.i9.2779.
Han Y, Kang Y, Yu J, et al. Increase of Hspa1a and Hspa1b genes in the resting B cells of Sirt1 knockout mice. Mol Biol Rep 2019;46:4225-34. doi:10.1007/s11033-019-04876-7.
Peng D, Lv M, Li Z, et al. Postmortem interval determination using mRNA markers and DNA normalization. Int J Legal Med 2020;134:149-57. doi:10.1007/s00414-019-02199-7.
Scrivano S, Sanavio M, Tozzo P, et al. Analysis of RNA in the estimation of post-mortem interval: A review of current evidence. Int J Legal Med 2019;133:1629-40. doi:10.1007/s00414-019-02125-x.
Scott L, Finley SJ, Watson C, et al. Life and death: A systematic comparison of antemortem and postmortem gene expression. Gene 2020;731:144349. doi:10.1016/j.gene.2020.144349.
Ma J, Pan H, Zeng Y, et al. Exploration of the R code-based mathematical model for PMI estimation using profiling of RNA degradation in rat brain tissue at different temperatures. Forensic Sci Med Pathol 2015;11:530-7. doi:10.1007/s12024-015-9703-7.
Stucki D, Freitak D, Sundström L. Survival and gene expression under different temperature and humidity regimes in ants. PLoS One 2017;12:e0181137. doi:10.1371/journal.pone.0181137.
Payne-James J, Jones RM. Simpson’s forensic medicine: CRC Press; 2019.
Coli ă CI, Olaru DG, Coli ă D, et al. Induced Coma, Death, and Organ Transplantation: A Physiologic, Genetic, and Theological Perspective. Int J Mol Sci 2023;24:5744. doi:10.3390/ijms24065744.
Kim MY, Seo EJ, Lee DH, et al. Gadd45β is a novel mediator of cardiomyocyte apoptosis induced by ischaemia/hypoxia. Cardiovasc Res 2010;87:119-26. doi:10.1093/cvr/cvq048.
Antiga LG, Sibbens L, Abakkouy Y, et al. Cell survival and DNA damage repair are promoted in the human blood thanatotranscriptome shortly after death. Sci Rep 2021;11:16585. doi:10.1038/s41598-021-96095-z.
Zapico SC, Menéndez ST, Núñez P. Cell death proteins as markers of early postmortem interval. Cell Mol Life Sci 2014;71:2957-62. doi:10.1007/s00018-013-1531-x.
Tao L, Ma J, Han L, et al. Early postmortem interval estimation based on Cdc25b mRNA in rat cardiac tissue. Leg Med (Tokyo) 2018;35:18-24. doi:10.1016/j.legalmed.2018.09.004.
Chung U, Seo JS, Kim YH, et al. Quantitative analyses of postmortem heat shock protein mRNA profiles in the occipital lobes of human cerebral cortices: Implications in cause of death. Mol Cells 2012;34:473-80. doi:10.1007/s10059-012-0214-z.
Bahar B, Monahan FJ, Moloney AP, et al, Sweeney T. Long-term stability of RNA in post-mortem bovine skeletal muscle, liver and subcutaneous adipose tissues. BMC Mol Biol 2007;8:108. doi:10.1186/1471-2199-8-108.
Seear PJ, Sweeney GE. Stability of RNA isolated from post-mortem tissues of Atlantic salmon (Salmo salar L.). Fish Physiol Biochem 2008;34:19-24. doi:10.1007/s10695-007-9141-x.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Medicine and Health Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.