Antimicrobial Resistance: Genetic Perspectives and Implications


  • Sarunyou Chusri Division of Infectious Disease, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
  • Apichai Tuanyok Department of Infectious Diseases and Pathology, Emerging Pathogens Institute, University of Florida, Gainesville, Florida 32611, United State of America.



antimicrobial resistance, genetic, implication


The emergences of antimicrobial-resistant bacteria is raised as a serious global concern. Several interventions are used to solve these issues while those beneficial results are still unclear. The pursuit of knowledge through the nature of antimicrobial resistance seem to be the principal to deal with these problems. Recent researches with advanced technologies elucidate the present characteristics as well as predict their evolutions. Molecular data on developing antimicrobial resistance guides to the appropriate clinical practices and transmission prevention. The plenty data on genetic mobile materials are served to clarify several phenomenon and explain the failure of several interventions for controlling antimicrobial resistance. In this review, we focus on the findings of phenotypic and genotypic data of antimicrobial resistance based established advanced researches. We emphasize to apply of those knowledge to routine practices and policy making for control the current situations antimicrobial resistance.


Download data is not yet available.


1. Aminov RI. A Brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 2010;1:134.

2. World Health Organization. Global action plan on antimicrobial resistance [homepage on the Internet]. Geneva: WHO; 2015 [cited 2017 Jun 15]. Available from:

3. World Health Organization. Global strategy for containment of antimicrobial resistance [monograph on the Internet] Geneva: WHO; 2001 [cited 2017 Jun 15]. Available from:

4. Organization for Economic Co-operation and Development. OECD health data 2006 [homepage on the Internet]. Paris: OECD; 2006 [cited 2017 Jun 15]. Available from:

5. Padmini N, Ajilda AAK, Sivakumar N, Selvakumar G. Extended spectrum β-lactamase producing Escherichia coli and Klebsiella pneumoniae: critical tools for antibiotic resistance pattern. J Basic Microbiol 2017;57:460-70.

6. Novikova OD, Portnyagina OY, Solov’eva TF. Modified and mutant porins in a study on the molecular basis of non specific diffusion. Curr Protein Pept Sci 2017;18:233-9.

7. Chitsaz M, Brown MH. The role played by drug efflux pumps in bacterial multidrug resistance. Essays Biochem 2017;61:127-39.

8. Hakenbeck R, Brückner R, Denapaite D, Maurer P. Molecular mechanisms of β-lactam resistance in Streptococcus pneumoniae. Future Microbiol 2012;7:395-410.

9. Courvalin P. Vancomycin resistance in gram-positive cocci. Clin Infect Dis 2006;42(Suppl 1):S25-34.

10. Swann JP. The search for synthetic penicillin during world war II. Br J Hist Sci 1983;16:154-90.

11. Fletcher C. First clinical use of penicillin. BMJ 1984;289:1721-3.

12. Wright GD. Antibiotic resistance in the environment: a link to the clinic? Curr Opin Microbiol 2010;13:589-94.

13. Nordmann P. Trends in beta-lactam resistance among Enterobacteriaceae. Clin Infect Dis 1998;27(Suppl 1):S100-6.

14. Paterson DL. Resistance in gram-negative bacteria: Enterobacteriaceae. Am J Infect Control 2006;34(5 Suppl 1):S20-8.

15. Kim ES, Hooper DC. Clinical importance and epidemiology of quinolone resistance. Infect Chemother 2014;46:226-38.

16. Correia S, Poeta P, Hebraud M, Capelo JL, Igrejas G. Mechanisms of quinolone action and resistance: where do we stand? J Med Microbiol 2017;66:551-9.

17. Corona F, Blanco P, Alcalde-Rico M, Hernando-Amado S, Lira F, Bernardini A, et al. The analysis of the antibiotic resistome offers new opportunities for therapeutic intervention. Future Med Chem 2016;8:1133-51.

18. Crofts TS, Gasparrini AJ, Dantas G. Next-generation approaches to understand and combat the antibiotic resistome. Nat Rev Microbiol 2017;15:422-434.

19. Hu Y, Gao GF, Zhu B. The antibiotic resistome: gene flow in environments, animals and human beings. Front Med 2017;11:161-8.

20. Lee PY, Chin SF, Neoh HM, Jamal R. Metaproteomic analysis of human gut microbiota: where are we heading? J Biomed Sci 2017;24:36.

21. Macpherson AJ, de Aguero MG, Ganal-Vonarburg SC. How nutrition and the maternal microbiota shape the neonatal immune system. Nat Rev Immunol 2017;17:508-17.

22. Kim D, Hofstaedter CE, Zhao C, Mattei L, Tanes C, Clarke E, et al. Optimizing methods and dodging pitfalls in microbiome research. Microbiome 2017;5:52.

23. Stone VN, Xu P. Targeted antimicrobial therapy in the microbiome era. Mol Oral Microbiol 2017;32:446-54.

24. Bao Y, Al KF, Chanyi RM, Whiteside S, Dewar M, Razvi H, et al. Questions and challenges associated with studying the microbiome of the urinary tract. Ann Transl Med 2017;5:33.

25. Chotirmall SH, Gellatly SL, Budden KF, Mac Aogain M, Shukla SD, Wood DL, et al. Microbiomes in respiratory health and disease: an asia-pacific perspective. Respirology 2017;22:240-50.

26. Davies J. How to discover new antibiotics: harvesting the parvome. Curr Opin Chem Biol 2011;15:5-10.

27. Davies J, Ryan KS. Introducing the parvome: bioactive compounds in the microbial world. ACS Chem Biol 2012;7:252-9.

28. Johnson BK, Abramovitch RB. Small molecules that sabotage bacterial virulence. Trends Pharmacol Sci 2017;38:339-62.

29. Alekshun MN, Levy SB. Molecular mechanisms of anti bacterial multidrug resistance. Cell 2007;128:1037-50.

30. Cox G, Wright GD. Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int J Med Microbiol 2013;303:287-92.

31. Hernandez J, Gonzalez-Acuna D. Anthropogenic antibiotic resistance genes mobilization to the Polar Regions. Infect Ecol Epidemiol 2016;6. DOI: 10.3402/iee.v6.32112

32. Tripathi V, Cytryn E. Impact of anthropogenic activities on the dissemination of antibiotic resistance across ecological boundaries. Essays Biochem 2017;61:11-21.

33. Filutowicz M, Burgess R, Gamelli RL, Heinemann JA, Kurenbach B, Rakowski SA, et al. Bacterial conjugation-based anti microbial agents. Plasmid 2008;60:38-44.

34. Williams JJ, Hergenrother PJ. Exposing plasmids as the Achilles’ heel of drug-resistant bacteria. Curr Opin Chem Biol 2008;12:389-99.

35. Mathers AJ, Peirano G, Pitout JD. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev 2015;28:565-91

36. Starlinger P. IS elements and transposons. Plasmid 1980;3:241-59.

37. Canica M, Manageiro V, Jones-Dias D, Clemente L, Gomes Neves E, Poeta P, et al. Current perspectives on the dynamics of antibiotic resistance in different reservoirs. Res Microbiol 2015;166:594-600.

38. Pagano M, Martins AF, Barth AL. Mobile genetic elements related to carbapenem resistance in Acinetobacter baumannii. Braz J Microbiol 2016;47:785-92.

39. Deng Y, Bao X, Ji L, Chen L, Liu J, Miao J, et al. Resistance integrons: class 1, 2 and 3 integrons. Ann Clin Microbiol Antimicrob 2015;14:45.

40. Escudero JA, Loot C, Nivina A, Mazel D. The integron: adaptation on demand. Microbiol Spectr 2015:3. DOI: 10.1128/microbiolspec.MDNA3-0019-2014.

41. Gillings MR. Class 1 integrons as invasive species. Curr Opin Microbiol 2017;38:10-15.

42. Iredell J, Brown J, Tagg K. Antibiotic resistance in Entero bacteriaceae: mechanisms and clinical implications. BMJ 2016;352:h6420.

43. Al-Tawfiq JA, Laxminarayan R, Mendelson M. How should we respond to the emergence of plasmid-mediated colistin resistance in humans and animals? Int J Infect Dis 2017;54:77-84.

44. Hawkey PM. Multidrug-resistant Gram-negative bacteria: a product of globalization. J Hosp Infect 2015;89:241-7.

45. Fernandez-Lopez R, Redondo S, Garcillan-Barcia MP, de la Cruz F. Towards a taxonomy of conjugative plasmids. Curr Opin Microbiol 2017;38:106-13.

46. Pitiriga V, Vrioni G, Saroglou G, Tsakris A. The impact of antibiotic stewardship programs in combating quinolone resistance: a systematic review and recommendations for more efficient interventions. Adv Ther 2017;34:854-65.

47. Nasiri MJ, Haeili M, Ghazi M, Goudarzi H, Pormohammad A, Imani Fooladi AA, et al. New insights in to the intrinsic and acquired drug resistance mechanisms in Mycobacteria. Front Microbiol 2017;8:681.

48. Conlin PL, Chandler JR, Kerr B. Games of life and death: antibiotic resistance and production through the lens of evolutionary game theory. Curr Opin Microbiol 2014;21:35-44.

49. Mancabelli L, Milani C, Lugli GA, Turroni F, Ferrario C, van Sinderen D, et al. Meta-analysis of the human gut microbiome from urbanized and pre-agricultural populations. Environ Microbiol 2017;19:1379-90.

50. Wallinga D, Rayner G, Lang T. Antimicrobial resistance and biological governance: explanations for policy failure. Public Health 2015;129:1314-25.

51. Azarbad H, van Gestel CA, Niklinska M, Laskowski R, Roling WF, van Straalen NM. Resilience of soil microbial communities to metals and additional stressors: DNA-based approaches for assessing “stress-on-stress” responses. Int J Mol Sci 2016;17:1.

52. Plantinga NL, Wittekamp BH, van Duijn PJ, Bonten MJ. Fighting antibiotic resistance in the intensive care unit using antibiotics. Future Microbiol 2015;10:391-406.

53. Lipsitch M, Siber GR. How can vaccines contribute to solving the antimicrobial resistance problem? M Bio 2016;7. DOI: 10.1128/mBio.00428-16.

54. Kim L, McGee L, Tomczyk S, Beall B. Biological and epidemiological features of antibiotic-resistant Streptococcus pneumoniae in pre- and post-conjugate vaccine eras: a united states perspective. Clin Microbiol Rev 2016;29:525-52.




How to Cite

Chusri S, Tuanyok A. Antimicrobial Resistance: Genetic Perspectives and Implications. J Health Sci Med Res [Internet]. 2018 Sep. 12 [cited 2022 Oct. 5];36(4):311-22. Available from:



Review Article