Factors Associated with Goal Attainment in Children with Cerebral Palsy: An Ambidirectional Cohort Study
Keywords:
associated factor, cerebral palsy, goal attainment, goal-directed therapy, goal settingAbstract
Objectives: This study aimed to identify factors influencing goal attainment in children with cerebral palsy (CP) while evaluating the appropriateness of established therapeutic goals.
Study design: An ambidirectional cohort study
Setting: The Rehabilitation Department, Siriraj Hospital, Bangkok, Thailand
Subjects: Patients aged 0 to 15 years with a diagnosis of cerebral palsy were eligible if they had received at least two sessions of goal-directed therapy (GDT) and a post-therapy Goal Attainment Scale (GAS) evaluation between January 2016 and March 2022.
Methods: A total of 462 goals were evaluated using the GAS. Clinical variables, including age, sex, CP type, functional classification, goals, comorbidities, and therapy frequency, were analyzed for associations with goal attainment.
Results: Clinical data were collected from 111 pediatric CP patients (51.4% female) undergoing GDT at a university hospital rehabilitation unit. The participants had a mean age of 4.7 years (SD = 2.7), with spastic CP being the most prevalent type (77.7%). The goals for high-functioning participants frequently targeted ambulation and hand function, while the goals for low-functioning groups focused on sitting, hand function, and swallowing. Overall, therapeutic goals were found to be appropriate, with a GAS T score of 50.2. The Gross Motor Function Classification System (GMFCS) levels I and II emerged as the sole statistically significant independent predictor of goal attainment (p = 0.04).
Conclusion: Children with CP who demonstrate greater gross motor function exhibit a greater likelihood of therapeutic goal attainment. The GMFCS should inform the selection of appropriate therapeutic goals. High-functioning children may benefit from active goals such as improving ambulation and hand function, while low-functioning groups progress best with passive goals centered on preventing complications and achieving early motor milestones.
References
Graham HK, Rosenbaum P, Paneth N, Dan B, Lin JP, Damiano DL, et al. Cerebral palsy. Nat Rev Dis Primers [Internet]. 2016 Jan 7 [cited 2025 Apr 22];2:15082. Available from: https://www.nature.com/articles/nrdp 201582. doi: 10.1038/nrdp.2015.82.
Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, et al. A report: the definition and classification of cerebral palsy. Dev Med Child Neurol Suppl [Internet]. 2007 Feb [cited 2025 Apr 22];109:8-14. Available from: https://pubmed.ncbi.nlm.nih.gov/17370477/
Oskoui M, Coutinho F, Dykeman J, Jetté N, Pringsheim T. An update on the prevalence of cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol [Internet]. 2013 Jun [cited 2025 Apr 22];55(6):509-19. Available from: https://onlinelibrary.wiley.com/doi/10.1111/dmcn.12080 doi: 10.1111/dmcn.12662.
Chueluecha C, Deeprasertdamrong W, Neekong R, Bamroongya N. Surveying a decade of cerebral palsy prevalence and characteristics at Thammasat University Hospital, Thailand. J Med Assoc Thai [Internet]. 2020 [cited 2025 Apr 22];103(4):379-86-86. Available from: http://jmatonline.com/view.php?id=2368
Ploypetch T, Buasuk C, Pajareya K. Participation restriction of children with cerebral palsy living in Thailand and influential factors: A cross-sectional study. Developmental Neurorehabilitation [Internet]. 2022 Aug [cited 2025 Apr 22];25(6):392-9. Available from: https://www.tandfonline.com/doi/10.1080/17518423.2022.2047121?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed doi: 10.1080/17518423.2022.2047121
Novak I, Morgan C, Fahey M, Finch-Edmondson M, Galea C, Hines A, et al. State of the evidence traffic lights 2019: systematic review of interventions for preventing and treating children with cerebral palsy. Curr Neurol Neurosci Rep [Internet]. 2020 [cited 2025 Apr 22];20(2):3. Available from: https://link.springer.com/article/10.1007/s11910-020-1022-z doi: 10.1007/s11910-020-1022-z.
Bovend’Eerdt TJH, Botell RE, Wade DT. Writing SMART rehabilitation goals and achieving goal attainment scaling: a practical guide. Clin Rehabil [Internet]. 2009 [cited 2025 Apr 22];23(4):352-61. Available from: https://journals.sagepub.com/doi/10.1177/0269215508101741?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed doi: 10.1177/0269215508101741.
Palee S, Ploypetch T, Pajareya K, Timdang S. Goal-directed therapy to improve gross motor function and the quality of life of children with cerebral palsy: a randomized controlled trial. Siriraj Medical Journal [Internet]. 2022 [cited 2025 Apr 22];74(1):1-10. Available from: https://he02.tci-thaijo.org/index.php/sirirajmedj/article/view/255504 doi: 10.33192/Smj.2022.1
Bexelius A, Carlberg EB, Löwing K. Quality of goal setting in pediatric rehabilitation-A SMART approach. Child Care Health Dev [Internet]. 2018 [cited 2025 Apr 22];44(6):850-6. Available from:
Seung Mi Y, Ji Young L, Hye Yeon S, Yun Sik S, Jeong Yi K. Factors influencing motor outcome of hippotherapy in children with cerebral palsy. Neuropediatrics [Internet]. 2019 [cited 2025 Apr 22];50(3):170-7. Available from: https://onlinelibrary.wiley.com/doi/10.1111/cch.12609 doi: 10.1111/cch.12609.
Hong BY, Jo L, Kim JS, Lim SH, Bae JM. Factors influencing the gross motor outcome of intensive therapy in children with cerebral palsy and developmental delay. J Korean Med Sci [Internet]. 2017 [cited 2025 Apr 22];32(5):873-9. Available from: https://jkms.org/DOIx.php?id=10.3346/jkms.2017.32.5.873 doi: 10.3346/jkms.2017.32.5.873.
Bumin G, Kavak ST. An investigation of the factors affecting handwriting performance in children with hemiplegic cerebral palsy. Disabil Rehabil [Internet]. 2008 [cited 2025 Apr 22];30(18):1374-85. Available from: https://www.tandfonline.com/doi/10.1080/09638280701673609?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed doi: 10.1080/09638280701673609.
Livingstone RW, Bone J, Field DA. Beginning power mobility: An exploration of factors associated with child use of early power mobility devices and parent device preference. J Rehabil Assist Technol Eng [Internet]. 2020 [cited 2025 Apr 22]; 7:2055668320926046. Available from: https://journals.sagepub.com/doi/10.1177/2055668320926046?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed doi: 10.1177/2055668320926046.
Tseng MH, Chen KL, Shieh JY, Lu L, Huang CY. The determinants of daily function in children with cerebral palsy. Res Dev Disabil [Internet]. 2011 [cited 2025 Apr 22];32(1):235-45. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0891422210002374?via%3Dihub doi: 10.1016/j.ridd.2010.09.024.
Benfer KA, Weir KA, Bell KL, Ware RS, Davies PSW, Boyd RN. Oropharyngeal dysphagia and gross motor skills in children with cerebral palsy. Pediatrics [Internet]. 2013 [cited 2025 Apr 22];131(5):e1553-1562. Available from: https://publications.aap.org/pediatrics/article-abstract/131/5/e1553/31279/Oropharyngeal-Dysphagia-and-Gross-Motor-Skills-in?redirectedFrom=fulltext doi: 10.1542/peds.2012-3093.
Pashmdarfard M, Richards ,Lorie Gage, and Amini M. Factors Affecting Participation of Children with Cerebral Palsy in Meaningful Activities: Systematic Review. Occupational Therapy In Health Care [Internet]. 2021 Oct 1 [cited 2025 May 23];35(4):442-79. Available from: https://www.tandfonline.com/doi/ref/10.1080/07380577.2021.1938339?scroll=top doi:10.1080/07380577.2021.1938339
Arpino C, Vescio MF, De Luca A, Curatolo P. Efficacy of intensive versus nonintensive physiotherapy in children with cerebral palsy: a meta-analysis. Int J Rehabil Res [Internet]. 2010 [cited 2025 Apr 22];33(2):165-71. Available from: https://journals.lww.com/intjrehabilres/abstract/2010/06000/efficacy_of_intensive_versus_nonintensive.10.aspx doi: 10.1097/MRR.0b013e328332f617.
Turner-Stokes L. Goal attainment scaling (GAS) in rehabilitation: a practical guide. Clin Rehabil [Internet]. 2009 Apr 1 [cited 2025 Apr 22];23(4):362-70. Available from: https://journals.sagepub.com/doi/10.1177/0269215508101742 doi: 10.1177/0269215508101742
Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol [Internet]. 1997 [cited 2025 Apr 22];39(4):214-23. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8749.1997.tb07414.x?sid=nlm%3Apubmed doi: 10.1111/j.1469-8749.1997.tb07414.x.
Palisano RJ, Rosenbaum P, Bartlett D, Livingston MH. Content validity of the expanded and revised Gross Motor Function Classification System. Dev Med Child Neurol [Internet]. 2008 [cited 2025 Apr 22];50(10):744-50. Available from: https://onlinelibrary.wiley.com/doi/10.1111/j.1469-8749.2008.03089.x doi: 10.1111/j.1469-8749.2008.03089.x.
Barty E, Caynes K, Johnston LM. Development and reliability of the functional communication classification system for children with cerebral palsy. Dev Med Child Neurol [Internet]. 2016 [cited 2025 Apr 22];58(10):1036-41. Available from: https://onlinelibrary.wiley.com/doi/10.1111/dmcn.13124 doi: 10.1111/dmcn.13124.
Morris C, Kurinczuk JJ, Fitzpatrick R, Rosenbaum PL. Reliability of the manual ability classification system for children with cerebral palsy. Dev Med Child Neurol [Internet]. 2006 [cited 2025 Apr 22];48(12):950-3. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8749.2006.tb01264.x?sid=nlm%3Apubmed doi: 10.1017/S001216220600209X.
Rodby-Bousquet E, Paleg G, Casey J, Wizert A, Livingstone R. Physical risk factors influencing wheeled mobility in children with cerebral palsy: a cross-sectional study. BMC Pediatr [Internet]. 2016 [cited 2025 Apr 22];16(1):165. Available from: https://bmcpediatr.biomedcentral.com/articles/10.1186/s12887-016-0707-6 doi: 10.1186/s12887-016-0707-6.
Nguyen L, Mesterman R, Gorter JW. Development of an inventory of goals using the international classification of functioning, disability and health in a population of non-ambulatory children and adolescents with cerebral palsy treated with botulinum toxin A. BMC Pediatrics [Internet]. 2018 [cited 2025 Apr 22];18(1):1. Available from: https://bmcpediatr.biomedcentral.com/articles/10.1186/s12887-017-0974-x doi10.1186/s12887-017-0974-x
de Leeuw MJ, Schasfoort FC, Spek B, van der Ham I, Verschure S, Westendorp T, et al. Factors for changes in self-care and mobility capabilities in young children with cerebral palsy involved in regular outpatient rehabilitation care. Heliyon [Internet]. 2021 [cited 2025 Apr 22];7(12):e08537. Available from: https://www.cell.com/heliyon/fulltext/S2405-8440(21)02640-2?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2405844021026402%3Fshowall%3Dtrue doi: 10.1016/j.heliyon.2021.e08537.
Kusumoto Y, Takaki K, Matsuda T, Nitta O. Relevant factors of self-care in children and adolescents with spastic cerebral palsy. PLoS One [Internet]. 2021 [cited 2025 Apr 22];16(7):e0254899. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0254899 doi: 10.1371/journal.pone.0254899.
Strobl W, Theologis T, Brunner R, Kocer S, Viehweger E, Pascual-Pascual I, et al. Best clinical practice in botulinum toxin treatment for children with cerebral palsy. Toxins (Basel) [Internet]. 2015 [cited 2025 Apr 22];7(5):1629-48. Available from: https://www.mdpi.com/2072-6651/7/5/1629 doi: 10.3390/toxins7051629.
Spittle A, Orton J, Anderson PJ, Boyd R, Doyle LW. Early developmental intervention programmes provided post hospital discharge to prevent motor and cognitive impairment in preterm infants. Cochrane Database Syst Rev [Internet]. 2015 [cited 2025 Apr 22];(11):CD005495. Available from: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD005495.pub4/full doi: 10.1002/14651858.CD005495.pub4.
Størvold GV, Jahnsen RB, Evensen KAI, Romild UK, Bratberg GH. Factors associated with enhanced gross motor progress in children with cerebral palsy: a register-based study. Phys Occup Ther Pediatr [Internet]. 2018 [cited 2025 Apr 22];38(5):548-61. Available from: https://www.tandfonline.com/doi/10.1080/01942638.2018.1462288?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed doi: 10.1080/01942638.2018.1462288.
Masiero S, Avesani R, Armani M, Verena P, Ermani M. Predictive factors for ambulation in stroke patients in the rehabilitation setting: A multivariate analysis. Clinical Neurology and Neurosurgery [Internet]. 2007 Nov 1 [cited 2025 May 27];109(9):763-9. Available from: https://www.sciencedirect.com/science/article/pii/S0303846707001916 doi: 10.1016/j.clineuro.2007.07.009
Shelton F de NAP, Volpe BT, Reding M. Motor Impairment as a Predictor of Functional Recovery and Guide to Rehabilitation Treatment After Stroke. Neurorehabil Neural Repair [Internet]. 2001 Sep 1 [cited 2025 May 27];15(3):229-37. Available from: https://journals.sagepub.com/doi/10.1177/154596830101500311 doi: 10.1177/154596830101500311
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


