A Pilot Study of End-Effector Robotic Gait Training for Improving Gait and Balance Abilities in the Older Patients after Hip Fracture Surgery
Keywords:
Robotic Gait Training, end effector type, older patient, hip fracture, gait, balanceAbstract
Objectives: To assess the effect of ‘SensibleSTEP’ end-effector type robotic gait training on gait and balance abilities in the older patients after hip fracture surgery
Study design: A quasi-experimental pilot study
Setting: The Department of Rehabilitation Medicine, Lerdsin Hospital, Bangkok, Thailand
Subjects: Older patients (aged ≥ 60) who underwent hip fracture surgery between March - September 2023.
Methods: Ten older subjects who had undergone hip fracture surgery were recruited for a robotic gait training program. The program consisted of 30-minute training sessions conducted twice weekly for four consecutive weeks, a total of eight sessions. The investigator evaluated the Functional Ambulation Category (FAC), Timed Up and Go (TUG), Single Leg Stance (SLS), Four Step Square (FSS), gait speed, stride length, cadence, visual analogue scale (VAS), gait aid use, and level of assistance both before and after the training program.
Results: Robotic gait training with SensibleSTEP showed statistically significant improvements in FAC, TUG, FSS, gait speed, and stride length. Trends of improvement were observed in SLS, cadence, VAS, gait aid use, and level of assistance.
Conclusions: End-effector robotic gait training for eight sessions can improve gait and balance abilities in the older patients who had undergone hip fracture surgery
References
Office of the Civil Service Commission. The government sector and preparation for entering an aging society. Civil Service e-Journal [Internet]. 2018 [cited 2023 Jan 1]; 60(4):2-23. Available from: https://www.ocsc.go.th/sites/default/files/document/ocsc-2561-y60b04.pdf
Rodseeda P. Fall prevention among the elderly living in a community: the nursing role in home health care. TRC Nurs J [Internet]. 2018 [cited 2023 Jan 1]; 11(2):15-25. Available from: https://he02.tci-thaijo.org/index.php/trcnj/article/view/164295
Fairhall NJ, Dyer SM, Mak JC, Diong J, Kwok WS, Sherrington C. Interventions for improving mobility after hip fracture surgery in adults. Cochrane Database Syst Rev [Internet]. 2022 [cited 2023 Jan 1]; 9(9):CD001704. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21412873/ doi: 10.1002/14651858.CD001704.pub5
Lu Y, Uppal HS. Hip fractures: relevant anatomy, classification, and biomechanics of fracture and fixation. Geriatr Orthop Surg Rehabil [Internet]. 2019 [cited 2024 Apr 13]; 10:1-10. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31321116/ doi: 10.1177/2151459319859139
Eakwirojanasakul J. Refracture prevention in elderly patients with previous hip fracture in Somdejprasangkharach 17th hospital, Suphanburi. Reg 4-5 Med J [Internet]. 2019 [cited 2023 Jan 1]; 38(1):39-49. Available from: https://he02.tci-thaijo.org/index.php/reg45/article/view/183017
Penrod JD, Litke A, Hawkes WG, Magaziner J, Koval KJ, Doucette JT, et al. Heterogeneity in hip fracture patients: age, functional status, and comorbidity. J Am Geriatr Soc [Internet]. 2007 [cited 2023 Jan 1]; 55(3):407-13. Available from: https://www.ncbi.nlm.nih.gov/pubmed/17341244/ doi: 10.1111/j.1532-5415.2007.01078.x
Brenneman SK, Barrett-Connor E, Sajjan S, Markson LE, Siris ES. Impact of recent fracture on health-related quality of life in postmenopausal women. J Bone Miner Res [Internet]. 2006 [cited 2023 Jan 1]; 21(6):809-16. Available from: https://www.ncbi.nlm.nih.gov/pubmed/16753011/ doi: 10.1359/jbmr.060301
Pils K, Neumann F, Meisner W, Schano W, Vavrovsky G, Van der Cammen TJ. Predictors of falls in elderly people during rehabilitation after hip fracture--who is at risk of a second one? Z Gerontol Geriatr [Internet]. 2003 [cited 2023 Jan 1]; 36(1):16-22. Available from: https://www.ncbi.nlm.nih.gov/pubmed/12616403/ doi: 10.1007/s00391-003-0142-9
Kristensen MT, Foss NB, Kehlet H. Timed “up & go” test as a predictor of falls within 6 months after hip fracture surgery. Phys Ther [Internet]. 2007 Jan [cited 2023 Jan 1]; 87(1):24-30. Available from: https://www.ncbi.nlm.nih.gov/pubmed/17142643/ doi: 10.2522/ptj.20050271
Yeh HF, Shao JH, Li CL, Wu CC, Shyu YL. Predictors of postoperative falls in the first and second postoperative years among older hip fracture patients. J Clin Nurs [Internet]. 2017 [cited 2023 Jan 1]; 26(21-22):3710-23. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28122396/ doi: 10.1111/jocn.13743
Sato T, Tsushima E, Ogihara H. Factors contributing to fall rate and second fall in older adults after rehabilitation of fractures: A prospective cohort study. Hirosaki Medical Journal [Internet]. 2022 [cited 2023 Jan 1]; 72(1-4):15-23. Available from: http://hdl.handle.net/10129/00007773/ doi: https://doi.org/10.32216/hirosakiigaku.72.1-4_15
Fransen M, Woodward M, Norton R, Robinson E, Butler M, Campbell AJ. Excess mortality or institutionalization after hip fracture: men are at greater risk than women. J Am Geriatr Soc [Internet]. 2002 [cited 2023 Jan 1]; 50(4):685-90. Available from: https://www.ncbi.nlm.nih.gov/pubmed/11982669/ doi: 10.1046/j.1532-5415.2002.50163.x
Miller RR, Ballew SH, Shardell MD, Hicks GE, Hawkes WG, Resnick B, et al. Repeat falls and the recovery of social participation in the year post-hip fracture. Age Ageing [Internet]. 2009 [cited 2023 Jan 1]; 38(5):570-5. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19586976/ doi: 10.1093/ageing/afp107
Kristensen MT. Factors affecting functional prognosis of patients with hip fracture. Eur J Phys Rehabil Med [Internet]. 2011 [cited 2023 Jan 1]; 47(2):257-64. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21597435
Unnanuntana A, Kuptniratsaikul V, Srinonprasert V, Charatcharoenwitthaya N, Kulachote N, Papinwitchakul L, et al. A multidisciplinary approach to post-operative fragility hip fracture care in Thailand - a narrative review. Injury [Internet]. 2023 [cited 2024 Apr 15]; 54(11):111039. Available from: https://www.ncbi.nlm.nih.gov/pubmed/37757673/ doi: 10.1016/j.injury.2023.111039
Colibazzi V, Coladonato A, Zanazzo M, Romanini E. Evidence based rehabilitation after hip arthroplasty. Hip Int [Internet]. 2020 [cited 2024 May 22]; 30(2_suppl):20-9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/33267691/ doi: 10.1177/1120700020971314
Monticone M, Ambrosini E, Brunati R, Capone A, Pagliari G, Secci C, et al. How balance task-specific training contributes to improving physical function in older subjects undergoing rehabilitation following hip fracture: a randomized controlled trial. Clin Rehabil [Internet]. 2018 [cited 2024 Apr 13]; 32(3):340-51. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28805094/ doi: 10.1177/0269215517724851
Beckmann M, Bruun-Olsen V, Pripp AH, Bergland A, Smith T, Heiberg KE. Effect of exercise interventions in the early phase to improve physical function after hip fracture - A systematic review and meta-analysis. Physiotherapy [Internet]. 2020 [cited 2023 Jan 1]; 108:90-7. Available from: https://www.ncbi.nlm.nih.gov/pubmed/32726713/ doi: 10.1016/j.physio.2020.04.009
Chen X, Yang W, Wang X. Balance training can enhance hip fracture patients’ independence in activities of daily living: A meta-analysis of randomized controlled trials. Medicine (Baltimore) [Internet]. 2020 [cited 2023 Jan 1]; 99(16):e19641. Available from: https://www.ncbi.nlm.nih.gov/pubmed/32311935/ doi: 10.1097/MD.0000000000019641
Laut J, Porfiri M, Raghavan P. The present and future of robotic technology in rehabilitation. Curr Phys Med Rehabil Rep [Internet]. 2016 [cited 2024 Apr 14]; 4(4):312-9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28603663/ doi: 10.1007/s40141-016-0139-0
Siddiqi NA IT, Chen My, Akamatsu N. A computer-aided walking rehabilitation robot. Am J Phys Med Rehail [Internet]. 1994 [cited 2023 Jan 1]; 73(3):212-6. Available from: https://www.ncbi.nlm.nih.gov/pubmed/8198778/ doi: 10.1097/00002060-199406000-00011
Yang H, Lim H. Effects of trunk control rehabilitation robot training on dynamic balance, lower extremity strength, gait ability and pain in bipolar hemiarthroplasty. J Kor Phys Ther [Internet]. 2019 [cited 2023 Jan 1]; 31(2):94-102. Available from: http://www.kptjournal.org/journal/view.html?doi=10.18857/jkpt.2019.31.2.94/ doi: 10.18857/jkpt.2019.31.2.94
Fujikawa T, Takahashi S, Shinohara N, Mashima N, Koda M, Takahashi H, et al. Early postoperative rehabilitation using the Hybrid Assistive Limb (HAL) Lumbar Type in patients with hip fracture: A Pilot Study. Cureus [Internet]. 2022 [cited 2023 Jan 1]; 14(2):e22484. Available from: https://www.ncbi.nlm.nih.gov/pubmed/35371681/ doi: 10.7759/cureus.22484
Rohner E, Mayfarth A, Sternitzke C, Layher F, Scheidig A, Gross HM, et al. Mobile robot-based gait training after total hip arthroplasty (THA) improves walking in biomechanical gait analysis. J Clin Med [Internet]. 2021 [cited 2023 Jan 1]; 10(11):2416. Available from: https://www.ncbi.nlm.nih.gov/pubmed/34072524/ doi: 10.3390/jcm10112416
Setoguchi D, Kinoshita K, Kamada S, Sakamoto T, Kise N, Kotani N, et al. Hybrid Assistive Limb improves restricted hip extension after total hip arthroplasty. Assist Technol [Internet]. 2022 [cited 2023 Jan 1]; 34(1):112-20. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31909703/ doi: 10.1080/10400435.2020.1712498
Koseki K, Mutsuzaki H, Yoshikawa K, Endo Y, Maezawa T, Takano H, et al. Gait training using the Honda walking assistive device® in a patient who underwent total hip arthroplasty: A single-subject study. Medicina (Kaunas) [Internet]. 2019 [cited 2023 Jan 1]; 55(3):69. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30875846/ doi: 10.3390/medicina55030069
Koneva ES, Lyadov KV, Shapovalenko TV, Zhukova EV, Polushkin VG. The hardware techniques for the restoration of the gait stereotype in the patients following total hip replacement: the personalized approach. Vopr Kurortol Fizioter Lech Fiz Kult [Internet]. 2018 [cited 2023 Jan 1]; 95(1):26-34. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29652043/ doi: 10.17116/kurort201895126-34
Costa V, Ramirez O, Perea L, Velasquez A, Otero A, Rocon E, et al. Development and clinical validation of a rehabilitation platform for hip fracture in elderly population. IEEE Trans Neural Syst Rehabil Eng [Internet]. 2022 [cited 2023 Jan 1]; 30:1340-9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/35580104/ doi: 10.1109/TNSRE.2022.3175688
Chanubol R, Wongphaet P, Panichareon L, Chavanich N. Gait rehabilitation in subacute hemiparetic stroke: Robot-assisted gait training versus conventional physical therapy. J Thai Rehabil Med [Internet]. 2012 [cited 2023 Jan 1]; 22(2):42-50. Available from: https://www.rehabmed.or.th/main/paperjournal_category/22-year/
Holden MK, Gill KM, Magliozzi MR. Gait assessment for neurologically impaired patients. Standards for outcome assessment. Phys Ther [Internet]. 1986 [cited 2023 Jan 1]; 66(10):1530-9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/3763704/ doi: 10.1093/ptj/66.10.1530
Chandrasekaran D, Andersson A, Hindenborg M, Norlin R, Akner G. Development of physical performance after acute hip fracture: an observational study in a regular clinical geriatric setting. Geriatr Orthop Surg Rehabil [Internet]. 2014 [cited 2023 Jan 10]; 5(3):93-102. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25360338/ doi: 10.1177/2151458514527606
Springer BA, Marin R, Cyhan T, Roberts H, Gill NW. Normative values for the unipedal stance test with eyes open and closed. J Geriatr Phys Ther [Internet]. 2007 [cited 2023 Jan 23]; 30(1):8-15. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19839175/ doi: 10.1519/00139143-200704000-00003
Dite W, Temple VA. A clinical test of stepping and change of direction to identify multiple falling older adults. Arch Phys Med Rehabil [Internet]. 2002 [cited 2023 Jan 23]; 83(11):1566-71. Available from: https://www.ncbi.nlm.nih.gov/pubmed/12422327/ doi: 10.1053/apmr.2002.35469
Heller GZ, Manuguerra M, Chow R. How to analyze the Visual Analogue Scale: Myths, truths and clinical relevance. Scand J Pain [Internet]. 2016 [cited 2023 Jan 1]; 13:67-75. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28850536/ doi: 10.1016/j.sjpain.2016.06.012
Rosanna Chau MW, Chan SP, Wong YW, Lau MYP. Reliability and validity of the modified functional ambulation classification in patients with hip fracture. Hong Kong Physiotherapy Journal [Internet]. 2013 [cited 2023 Nov 12]; 31(1):41–4. Available from: https://www.researchgate.net/publication/257450558_Reliability_and_validity_of_the_Modified_Functional_Ambulation_Classification_in_patients_with_hip_fracture/ doi: 10.1016/j.hkpj.2013.01.041
Rockwood K, Awalt E, Carver D, MacKnight C. Feasibility and measurement properties of the functional reach and the timed up and go tests in the Canadian study of health and aging. J Gerontol A Biol Sci Med Sci [Internet]. 2000 [cited 2023 Nov 12]; 55(2):M70-3. Available from: https://www.ncbi.nlm.nih.gov/pubmed /10737688/ doi: 10.1093/gerona/55.2.m70
Beauchamp MK, Hao Q, Kuspinar A, D’Amore C, Scime G, Ma J, et al. Reliability and minimal detectable change values for performance-based measures of physical functioning in the Canadian longitudinal study on aging. J Gerontol A Biol Sci Med Sci [Internet]. 2021 [cited 2023 Nov 12]; 76(11):2030-8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/34170316/ doi: 10.1093/gerona/glab175
Moore M, Barker K. The validity and reliability of the four square step test in different adult populations: a systematic review. Syst Rev [Internet]. 2017 [cited 2023 Nov 12]; 6(1):187. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28893312/ doi: 10.1186/s13643-017-0577-5
Chan WLS, Chan HL, Chen KM, Fan HL, Lai WC, Yu SW. Reliability and validity of walk tests for older adults with dementia: A systematic review. Alzheimer’s & Dementia [Internet]. 2022 [cited 2023 Nov 12]; 17:e050371. Available from: https://www.researchgate.net/publication/358272526_Reliability_and_validity_of_walk_tests_for_older_adults_with_dementia_A_systematic_review/ doi: 10.1002/alz.050371
Brokelman RB, Haverkamp D, van Loon C, Hol A, van Kampen A, Veth R. The validation of the visual analogue scale for patient satisfaction after total hip arthroplasty. Eur Orthop Traumatol [Internet]. 2012 [cited 2023 Nov 12]; 3(2):101-5. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22798966/ doi: 10.1007/s12570-012-0100-3
Marchesi G, Ballardini G, Barone L, Giannoni P, Lentino C, De Luca A, et al. Modified Functional Reach Test: Upper-Body Kinematics and Muscular Activity in Chronic Stroke Survivors. Sensors (Basel) [Internet]. 2021 [cited 2024 May 22]; 22(1). Available from: https://www.ncbi.nlm.nih.gov/pubmed/35009772/ doi: 10.3390/s22010230
Whitney SL, Wrisley DM, Marchetti GF, Gee MA, Redfern MS, Furman JM. Clinical measurement of sit-to-stand performance in people with balance disorders: validity of data for the Five-Times-Sit-to-Stand Test. Physical therapy [Internet]. 2005 [cited 2024 May 22]; 85 10:1034-45. Available from: https://www.semanticscholar.org/paper/Clinical-measurement-of-sit-to-stand-performance-in-Whitney-Wrisley/d0e3186e284e66ac5a4f4342397c971bf7a9c005/ doi: 10.1093/PTJ/85.10.1034
Guy GS. Kinesiology of walking. In: Neumann DA, editors. Kinesiology of the musculoskeletal system: Foundations for Rehabilitation [Internet]. United States: Mosby/Elsevier; 2010 [cited 2024 May 22]. Chapter 15. Available from: https://books.google.co.th/books?id=8ZhDPgAACAAJ
Healy WL, Iorio R, Clair AJ, Pellegrini VD, Della Valle CJ, Berend KR. Complications of total hip arthroplasty: standardized list, definitions, and stratification developed by the hip society. Clin Orthop Relat Res [Internet]. 2016 [cited 2024 May 22]; 474(2):357-64. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26040966/ doi: 10.1007/s11999-015-4341-7
Hongisto MT, Nuotio MS, Luukkaala T, Väistö O, Pihlajamäki HK. Lateral and posterior approaches in hemiarthroplasty. Scandinavian Journal of Surgery [Internet]. 2018 [cited 2024 May 22]; 107(3):260-8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29291698/ doi: 10.1177/1457496917748226
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.