ผลการฝึกโดยใช้หุ่นยนต์และกิจกรรมบำบัดกับกิจกรรมบำบัดเพียงอย่างเดียวต่อการฟื้นตัวของแขนและมือในผู้ป่วยโรคหลอดเลือดสมองระยะกึ่งเฉียบพลัน : การศึกษาแบบสุ่ม

ผลการฝึกโดยใช้หุ่นยนต์และกิจกรรมบำบัดกับกิจกรรมบำบัดเพียงอย่างเดียวต่อการฟื้นตัวของแขนและมือในผู้ป่วยโรคหลอดเลือดสมองระยะกึ่งเฉียบพลัน : การศึกษาแบบสุ่ม

Authors

  • ปิยะภัทร เดชพระธรรม
  • คณินณ์ เศรษฐไพศาล

Keywords:

stroke, rehabilitation, upper extremities recovery, robot, occupational therapy

Abstract

Objectives: To compare upper extremities recovery between robot-assisted training and occupational therapy (OT)  versus OT alone among subacute stroke patients.

Study design: Single blined randomized controlled trial.

Setting: Department of Rehabilitation Medicine, Siriraj Hospital.

Subjects:  Twenty subacute hemiplegic stroke patients at rehabilitation ward, Siriraj Hospital

Methods: All subjects were randomly assigned into 2 groups of an experimental or a control group. The experimental group received 30-minute of robot-assisted training to improve upper extremities functions plus a 30-minute upper extremities training and 30-minute of activity of daily living (ADL) training. The control group received 60-minute upper extremities training and 30-minute of ADL training. Both groups received treatments for 5 days per week for 3 consecutive weeks. The recovery of upper extremities was assessed before, 2 weeks and 3 weeks after treatments by using the Fugl -Meyer Assessment (FMA), the Medical Research Council (MRC), the Action Research Arm Test (ARAT) and the Motor Assessment Scale (MAS) .The functional disability was assessed by the Modified Barthel index (BI).

Results: 50% were males. The mean age of the experimental and the control groups were 68.5±13.6 and 52.3±10.9 years old (p =0.007). The Fugl -Meyer Assessment score of the experimental and the control groups at  week 0 were 9.4±5.1, 9.5±4.6 (p =0.98), at week 2 were 11.6±5.5, 15.7±8.6 (p =0.128), at week 3 were 17.1±7.7, 21.0±7.3 (p =0.229). The other assessments showed no statistically significant differences.

Conclusion: A robot-assisted training along with conventional occupational therapy showed no significantly difference in upper extremity recovery among subacute stroke patients when compared with a conventional occupational therapy alone.

References

1. Desrosiers J, Malouin F, Richards C, Bourbonnais D, Rochette A, Bravo G. Comparison of changes in upper and lower extremity impairments and disabilities after stroke. Int J Rehabil Res. 2003; 26:109-16.
2. Ragavan P. Upper limb motor impairment after stroke. Phys Med Rehabil Clin N Am 2015;26:599–610.
3. Nakayama H, Jorgensen HS, Raaschou HO, Olsen TS. Recovery of upper extremity function in stroke patients: the Copenhagen Study. Arch Phys Med Rehabil. 1994;75:852– 7.
4. Cooke EV, Mares K, Clark A, Tallis RC, Pomeroy VM. The effects of increased dose of exercise-based therapies to enhance motor recovery after stroke:a systematic review and meta-analysis. BMC Med. 2010;8:60-64
5. Kwakkel G, van Peppen R, Wagenaar RC, Wood Dauphinee S, Richards C, Ashburn A, et al. Effects of augmented exercise therapy time after stroke:a meta-analysis. Stroke. 2004;35:2529–39.
6. Esquenazi A, Packel A. Robotic-assisted gait training and restoration. Am J Phys Med Rehabil. 2012;91:217-27.
7. Lum PS, Burgar CG, Shor PC, Majmundar M, van der Loos M. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil. 2002;83:952–59.
8. Liao WW, Wu CY, Hsieh YW, Lin KC, Chang WY. Effects of robot-assisted upper limb rehabilitation on daily function and real-world arm activity in patients with chronic stroke:a randomized controlled trial. Clin Rehabil. 2011;26:111–20.
9. Hsieh YW, Wu CY, Lin KC, Yao G, Wu KY, Chang YJ. Dose response relationship of robot-assisted stroke motor rehabilitation:the impact of initial motor status. Stroke. 2012;43:2729-34.
10. Wu CY, Yang CL, Chuang LL, Lin KC, Chen HC, Chen MD, et al. Effect of therapist-based versus robot-assisted bilateral arm training on motor control, functional performance, and quality of life after chronic stroke:a clinical trial. Phys Ther. 2012;92:1006-16.
11. Hesse S, Werner C, Pohl M, Rueckriem S, Mehrholz J, Lingnau ML, et al. Computerized arm training improves the motor control of the severely affected arm after stroke a single-blinded randomized trial in two centers. Stroke. 2005;36:1960–66.
12. Center for Rehabilitation Outcome Research [Internet]. Rehab measure:Fugl-Meyer Assessment of Motor Recovery after Stroke. (cited 2016 March 6). Available from http://www.rehabmeasures.org/lists/rehabmeasures/dispform.aspx?ID=9.
13. Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. A method for evaluation of physical performance. Scand J Rehabil Med. 1975, 7:13-31.
14. De Weerdt WJG, Harrison MA. Measuring recovery of arm hand function in stroke patients:a comparison of the Brunnstrom-Fugl-Meyer test and Action Research Arm test. Physiother Can. 1985;37:65-70.
15. van der Lee JH, Beckerman H, Lankhorst GJ, Bouter LM. The responsiveness of the Action Research Arm test and the Fugl-Meyer Assessment scale in chronic stroke patients. J Rehabil Med. 2001;33:110-3.
16. Hallan S, Asberg A, Indredavik B, Wideroe TE. Quality of life after cerebrovascular stroke:a systematic study of patients’ preferences for different functional outcomes. J Intern Med. 1999;246:309–16.
17. Phankaew U , Tipchatyotin S, Chantorn P, Moungsunthorn K, Putharaksa P, Pianmanakit S, et al. Interrater Reliability of the Thai Version Motor Assessment Scale for Evaluation of Upper Extremity Function in Stroke Patients J Thai Rehabil Med. 2007;17:20-5.
18. Roth E, Davidoff G, Haughton J, Ardner M. Functional assessment in spinal cord injury:a comparison of the Modified Barthel Index and the ‘adapted’ Functional Independence Measure. Clin Rehabil. 1990;4:277–85.
19. Granger CV, Dewis LS, Peters NC, Sherwood CC, Barrett JC. Stroke rehabilitation:analysis of repeated Barthel Index measures. Arch Phys Med Rehabil. 1979;60:14–7.
20. Memis D, Kozanoglu E, Kelle B, Goncu MK. Assessment of demographic and clinical characteristics on functional status and disability of patients with stroke. J Rehabil Med. 2016;21:352-7.
21. Wei JW, Heely EL, Wang JG, Huang Y, Wong LKS, Li Z, et al. Comparison of Recovery patterns and prognostic indicators for ischemic and hemorrhagic stroke in China the China QUEST (QUality Evaluation of Stroke Care and Treatment) registry study. Stroke. 2010;41:1877-83.
22. Kwakkel G, Wagenaar RC, Twisk JW, Lankhorst GJ, Koetsier JC. Intensity of leg and arm training after primary middle-cerebral-artery stroke:a randomised trial. Lancet. 1999 17;354:191-6.
23. Pollock A, Farmer SE, Brady MC, Langhorne P, Mead GE, Mehrholz J, et al. Interventions for improving upper limb function after stroke. Cochrane Database Syst Rev. 2014;12:CD010820.
24. Kovindha A, Kammuang-lue P, Pattanakuhar S, Tongprasert S, Chonnaparamutt W, Sapsri W. Robotic WEFRE Rehab System for Upper Extremity Movements in Tetraplegic Patients:A Pilot Study. J Thai Rehabil Med. 2017;27:11-7.
25. Hoonhorst MH, Nijland RH, van den Berg JS, Emmelot CH, Kollen BJ, Kwakkel G. How do Fugl-Meyer arm motor scores relate to dexterity according to the Action Research Arm Test at 6 Months poststroke? Arch Phys Med Rehabil. 2015;96:1845-9.
26. Hsueh IP, Hsieh CL. Responsiveness of two upper extremity function instruments for stroke inpatients receiving rehabilitation. Clin Rehabil. 2002;16: 617-24.

Downloads

Published

2018-09-13