Review of physical ergonomics toolkit and assessment techniques for work-related musculoskeletal disorders prevention

Main Article Content

Ekarat Sombatsawat
Nutsuda Suksa-nga
Patcharida Sangdang
Teeraphun Kaewdok

Abstract

Work-related musculoskeletal disorders (WMSDs) represent a significant global occupational health and safety concern, primarily stemming from ergonomics risk exposures such as static postures, repetitive motions, and heavy manual material handling. There exists a disconnect between these factors and the capabilities and limitations of workers, which can adversely affect their health, particularly in the context of WMSDs. The identification and evaluation of ergonomics become crucial steps in providing insights for managing ergonomic issues. Currently, various ergonomics assessment tools are available, each with their unique advantages and limitations. The choice of tools should align with specific work characteristics. Therefore, the objective of this study is to present a physical ergonomics assessment toolkit and techniques to identify problems, recognize hazards, and assess risk factors. This will result in guidelines for work-related musculoskeletal disorders (WMSDs) prevention and further enhancing ergonomic working conditions.

Article Details

Section
Review Articles

References

International Ergonomics Association (IEA). What is Ergonomics? [Internet]. Switzerland. International Ergonomics Association; 2022 [cited 2023 July 24]. Available from: https://iea.cc/what-is-ergonomics/.

da Costa BR, Vieira ER. Risk factors for work-related musculoskeletal disorders: A systematic review of recent longitudinal studies. Am J Ind Med. 2010;53(3):285-323.

กระทรวงสาธารณสุข. รายงานประจำปี 2562 [อินเทอร์เน็ต]. กองโรคจากการประกอบอาชีพและสิ่งแวดล้อม กรมควบคุมโรค กระทรวงสาธารณสุข. 2562 [เข้าถึงเมื่อวันที่ 24 กรกฏคม 2566]. เข้าถึงได้จาก: http://inenvocc.ddc.moph.go.th/E-Book/annual_report2019/Index.html#p=1

Occhipinti E, Colombini D. IEA/WHO toolkit for WMSDs prevention: criteria and practical tools for a step by step approach. Work. 2012;41(Suppl1):3937-44.

Widyanti A. Validity and inter-rater reliability of postural analysis among new raters. Malays J Public Health Med. 2020;20:161-6.

Mangesh J, Vishwas D. Identification of indifferent posture zones in RULA by sensitivity analysis. Int J Ind Ergon. 2021;83:103-23.

Schwartz AH, Albin TJ, Gerberich SG. Intra-rater and inter-rater reliability of the rapid entire body assessment (REBA) tool. Int J Ind Ergon. 2019;71:111–6.

Mangesh J, Vishwas D. Investigative study and sensitivity analysis of Rapid Entire Body Assessment (REBA). Int J Ind Ergon. 2020;79:103004.

Li X. A visual ergonomic assessment approach using Kinect and OWAS in real workplace environments. Multiscale Multidiscip Model Exp Des. 2023;6:123-34.

Levanon Y, Lerman Y, Gefen A, Ratzon NZ. Validity of the modified RULA for computer workers and reliability of one observation compared to six. Ergonomics. 2014;57(12):1856–63.

Rimando C, Batay C, Canita V, Cruz A, Egos G, Ladisla N, Panlilio J, Ramos A, Tayo P, Villamor Z. Validity and reliability of the modified RULA (mRULA) among public and private office workers. J Phys Conf Ser. 2020;1529;032056.

Sonne M, Villalta DL, Andrews DM. Development and evaluation of an office ergonomic risk checklist: ROSA-rapid office strain assessment. Appl Ergon. 2012;43(1):98–108.

de Barros FC, Moriguchi CS, Chaves TC, Andrews DM, Sonne M, de Oliveira Sato T. Usefulness of the Rapid Office Strain Assessment (ROSA) tool in detecting differences before and after an ergonomics intervention. BMC Musculoskelet Disord. 2022;23(1):526.

Contreras-Valenzuela MR, Seuret-Jiménez D, Hdz-Jasso AM, León Hernández VA, Abundes-Recilla AN, Trutié-Carrero E. Design of a fuzzy logic evaluation to determine the ergonomic risk level of manual material handling tasks. Int J Environ Res Public Health. 2022;19:6511.

Rhén IM, Forsman M. Inter- and intra-rater reliability of the OCRA checklist method in video-recorded manual work tasks. Appl Ergon. 2020;84:103025.

Şenyiğit E, Atici U, Şenol MB. Effects of OCRA parameters and learning rate on machine scheduling. Central European J Oper Res. 2020;30:941–59.

Mokhtarinia HR, Abazarpour S, Gabel CP. Validity and reliability of the Persian version of the Quick Exposure Check (QEC) in Iranian construction workers. Work. 2020;67(2):387–94.

Oliv S, Gustafsson E, Baloch AN, Hagberg M, Sandén H. The Quick Exposure Check (QEC) — Inter-rater reliability in total score and individual items. Appl Ergon. 2019;76:3-7.

Spielholz P, Bao S, Howard N, Silverstein B, Fan J, Smith C, Salazar C. Reliability and validity assessment of the hand activity level threshold limit value and strain index using expert ratings of mono-task jobs. J Occup Environ Hyg. 2008;5(4):250–7.

Waters TR, Baron SL, Kemmlert K. Accuracy of measurements for the revised NIOSH lifting equation. National Institute for Occupational Safety and Health. Appl Ergon. 1998;29(6):433–8.

Rimell, AN, Notini L, Mansfield NJ, Edwards D. Variation between manufacturers’ declared vibration emission values and those measured under simulated workplace conditions for a range of hand-held power tools typically found in the construction industry. Int J Ind Ergon. 2008;38(9–10):661-75.

Snook SH, Irvine CH, Bass SF. Maximum weights and work loads acceptable to male industrial workers. AIHA Journal. 1970;31(5):579–86.

Kadikon Y, Abdol Rahman MN. Manual material handling risk assessment tool for assessing exposure to risk factor of work-related musculoskeletal disorders: A Review. J Eng Appl Sci. 2016;11(10):2226-32.

Krishnan H, Selvan T, Abdol Rahman MN. A systematic review of ergonomics risk assessment methods for pushing and pulling activities at workplace. Pertanika J Sci Technol. 2023:31(6):3157-78.

Armstrong TJ, Burdorf A, Descatha A, Farioli A, Graf M, Horie S, et al. Scientific basis of ISO standards on biomechanical risk factors. Scand J Work Environ Health. 2018:44(3):323-9.