Size and Morphology of Dust Particles from the Grinding and Polishing of Prosthodontic Materials
Main Article Content
Abstract
Objective: This study is an observational research aimed to investigating the size and shape of the dust particles.
Materials and Methods: The material used is a cobalt chromium metal alloy, heat-cured acrylic for denture bases and self-cured acrylic for temporary crowns, lithium disilicate ceramic and zirconia used for making crowns. Samples of the materials are polished to achieve smoothness, using a set of dental burs of each material. Polishing in transparent box with contained a personal dust collection filter located approximately 30 centimeters away from the grinding point. The grinding arranged in order from the most coarse to the finest dental burs. Each grinding bur performs grinding three times, with each session lasting 3 minutes. The filter paper that has accumulated dust from each grinding process is to be examined under a scanning electron microscope (SEM). The images obtained are processed their size using the ImageJ software. Quantitative elemental analysis equipment was used to determine the quantity and proportion of elements.
Results: The study finds that the majority of dust particles in each sample were within the size range of 1 to 5 micrometers, which is small enough to reach the bronchioles in the lungs. Some of the elements found in certain materials, such as cobalt and chromium from metal dust, are associated with respiratory diseases like pneumoconiosis. Additionally, dust particles from silica are known to cause silicosis. Furthermore, some dust particles had sharp or angular shapes can cause damage to the eyes and tissues in the respiratory system.
Conclusion: The size, shape and composition of the dust particles can cause risks to the respiratory system.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการลงตีพิมพ์ในวิทยาสารทันตแพทยศาสตร์ มหาวิทยาลัยขอนแก่นถือเป็นลิขสิทธิ์เฉพาะของคณะทันตแพทยศาสตร์ มหาวิทยาลัยขอนแก่น หากบุคคลหรือหน่วยงานใดต้องการนำทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อหรือเพื่อกระทำการใด ๆ จะต้องได้รับอนุญาตเป็นลายลักษณ์อักษร จากคณะทันตแพทยศาสตร์ มหาวิทยาลัยขอนแก่นก่อนเท่านั้น
References
Brune D, Beltesbrekke H, Strand G. Dust in dental laboratories. Part II: Measurement of particle size distributions. J Prosthet Dent. 1980;44(1):82-7.
Van Landuyt KL, Yoshihara K, Geebelen B, Peumans M, Godderis L, Hoet P, et al. Should we be concerned about composite (nano-) dust? . Dent Mater. 2012;28(11):1162-70.
Mazzoli A, Favoni O. Particle size, size distribution and morphological evaluation of airborne dust particles of diverse woods by Scanning Electron Microscopy and image processing program. Powder Technol. 2012;225:65–71.
Ulusoy U.A review of particle shape effects on material properties for various engineering apllication: from macro to nanoscale. Minerals. 2023;13(1):91.
Kim KH, Kabir E, Kabir S. A review on the human health impact of airborne particulate matter. Int J Environ. 2015;74:136-43.
Ampornaramveth R. Air quality in dental clinic. JDAT. 2016;67(1):11-24.
Centers for Disease Control and Prevention . DHHS (NIOSH) Publication Number 96-101 Available from:https://www.cdc.gov/niosh/docs/96-101/appendices.html
Tcharkhtchi A, Abbasnezhad N, Zarbini Seydani M, Zirak N, Farzaneh S, Shirinbayan M. An overview of filtration efficiency through the masks: Mechanisms of the aerosols penetration. Bioact Mater.2021;6(1):106–22.
Arunnart M. Efficiency of commercial face masks in PM2.5 Prevention. Rama Med J. 2021;44(2):11-7.
Alam Binte Z, Kazi ABM Mohiuddin. Micro-characterization of dust and materials of dust origin at a cement industry located in Bangladesh. Aerosol and Air Quality Research.2023;23(1):1-21.
Ding J, Li J, Qi J, Fu L. Characterization of dental dust particles and their pathogenicity to respiratory system: a narrative review. Clin Oral Investig 2023;27(5):1815–29.
Limpuangthip N, Salimee P, Vanichanon P. Attitude and performance in controlling dust particle from dental prosthesis and appliance adjustment: a survey of dentists and dental assistants. BDJ. 2024;10(1):26.
Organization WH. Hazard prevention and control in the work environment: airborne dust. Geneva: World Health Organization. 1999;50-2
Guidelines for monitoring areas at risk from air pollution in the case of small dust particles. Ministry of public Health Bangkok 2014.
Seldén A, Sahle W, Johansson L, Sörenson S, Persson B. Three cases of dental technician's pneumoconiosis related to cobalt-chromium-molybdenum dust exposure. Chest. 1996;109(3): 837-42.
Pascual del Pobil y Ferré M, García Sevila R, García Rodenas M, Barroso Medel E, Flores Reos E. Silicosis: A former occupational disease with new occupational exposure scenarios. Rev Clin Esp. 2019;219(1):26-296
Al-Hourani Z. Chromium and cobalt levels among dental technicians in the Northern Jordan. Eur Sci J. 2013;9(21)
Wang W, Li T, L Xue. Cytotoxic effects of dental prosthesis grinding dust on RAW264.7 cells Sci Rep. 2020;10(1):14364.