Evaluation of Two Patterns of Mechanics for Pulling Uprighting Force on an Impacted Mandibular Second Molar using Retromolar Miniscrew Anchorage: A Finite Element Analysis

Main Article Content

Puttnaree Kittichaithanakoon
Chaiy Rungsiyakul
Hadsamanan Chalermwong
Virush Patanaporn

Abstract

The objectives of this study were: to evaluate optimal force magnitude required to initiate the uprighting of a mesioangularly-impacted mandibular second molar (tooth 37) using two patterns of pulling uprighting mechanics with retromolar miniscrew anchorage, without exceeding the periodontal ligament capillary-vessel blood pressure (0.0047 MPa), and to describe the initial displacement pattern of tooth 37 when optimal force magnitude is applied. A 3-D (three-dimensional) model was reconstructed based on anatomic data from a CBCT scan, which was imported into ABAQUS finite element software, to simulate the two patterns of pulling uprighting mechanics. The pulling force direction was laid from a metal button on tooth 37 to a retromolar miniscrew. Various force magnitudes of 50 – 150 g were applied.  Pattern 1 used one-button mechanics, which had one direction of force with the metal button located on the occlusal surface of tooth 37. Pattern 2 used two-button mechanics, which had two directions of force with the two metal buttons located on the middle of the buccal and lingual surfaces of tooth 37. Finite element analysis was performed to evaluate the optimal force magnitude for each pattern of mechanics. Moreover, the optimal force magnitude was used to simulate the initial displacement pattern of tooth 37. The result indicated that the optimal force magnitude was 87 g in Pattern 1 and 73.5 g in Pattern 2. The initial tooth displacement of tooth 37 when 87 g and 73.5 g force were applied with Patterns 1 and 2 mechanics, respectively, were extrusion crown movement to occlusal plane, distal crown tipping and slight buccal crown tipping. Tooth 37 in Pattern 2 was crown movement to occlusal more than in Pattern 1.

Article Details

How to Cite
1.
Kittichaithanakoon P, Rungsiyakul C, Chalermwong H, Patanaporn V. Evaluation of Two Patterns of Mechanics for Pulling Uprighting Force on an Impacted Mandibular Second Molar using Retromolar Miniscrew Anchorage: A Finite Element Analysis. Khon Kaen Dent J [Internet]. 2021 Dec. 9 [cited 2024 Apr. 19];24(3):1-17. Available from: https://he01.tci-thaijo.org/index.php/KDJ/article/view/246432
Section
Research Articles
Share |

References

Shapira Y, Borell G, Nahlieli O, Kuftinec MM. Uprighting mesially impacted mandibular permanent second molars. Angle Orthod 1998;68(2):173-8.

Cassetta M, Altieri F, Di Mambro A, Galluccio G, Barbato E. Impaction of permanent mandibular second molar: A retrospective study. Med Oral Patol Oral Cir Bucal 2013;18(4):564-8.

Fu PS, Wang JC, Wu YM, Huang TK, Chen WC, Tseng YC, et al. Impacted mandibular second molars: A retrospective study of prevalence and treatment outcome. Angle Orthod 2012;82(4):670-5.

Shapira Y, Finkelstein T, Shpack N, Lai YH, Kuftinec MM, Vardimon A. Mandibular second molar impaction. Part I: Genetic traits and characteristics. Am J Orthod Dentofacial Orthop 2011;140(1):32-7.

Bondemark L, Tsiopa J. Prevalence of ectopic eruption, impaction, retention and agenesis of the permanent second molar. Angle Orthod 2007;77(5):773-8.

Raghoebar G, Boering G, Vissink A, Stegenga B. Eruption disturbances of permanent molars: a review. J Oral Pathol Med 1991;20(4):159-66.

Enache AM, Nicolescu I, Georgescu CE. Mandibular second molar impaction treatment using skeletal anchorage. Rom J Morphol Embryol 2012;53(4):1107-10.

Proffit WR. Equilibrium theory revisited: factors influencing position of the teeth. Angle Orthod 1978;48(3):175-86.

Sawicka M, Racka Pilszak B, Rosnowska Mazurkiewicz A. Uprighting partially impacted permanent second molars. Angle Orthod 2007;77(1):148-54.

Sivolella S, Roberto M, Bressan P, Bressan E, Cernuschi S, Miotti F, et al. Uprighting of the impacted second mandibular molar with skeletal anchorage. In: Bourzgui F, editor. Orthodontics-Basic Aspects and Clinical Considerations. 1 ed. Rijeka: InTech; 2012. p. 247-64.

Shellhart WC, Oesterle LJ. Uprighting molars without extrusion. J Am Dent Assoc 1999;130(3):381-5.

Roberts III WW, Chacker FM, Burstone CJ. A segmental approach to mandibular molar uprighting. Am J Orthod 1982;81(3):177-84.

Romeo DA, Burstone CJ. Tip-back mechanics. Am J Orthod 1977;72(4):414-21.

Kim MH, Kim M, Chun YS. Molar uprighting by a nickel-titanium spring based on a setup model. Am J Orthod Dentofacial Orthop 2014;146(1):119-23.

Tuncay OC, Biggerstaff RH, Cutcliffe JC, Berkowitz J. Molar uprighting with T-loop springs. J Am Dent Assoc 1980;100(6):863-6.

Magkavali-Trikka P, Emmanouilidis G, Papadopoulos MA. Mandibular molar uprighting using orthodontic miniscrew implants: a systematic review. Prog Orthod 2018;19(1):1-12.

Papadopoulos MA, Tarawneh F. The use of miniscrew implants for temporary skeletal anchorage in orthodontics: a comprehensive review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;103(5):e6-15.

Crismani AG, Bertl MH, Celar AG, Bantleon HP, Burstone CJ. Miniscrews in orthodontic treatment: review and analysis of published clinical trials. Am J Orthod Dentofacial Orthop 2010;137(1):108-13.

Giancotti A, Arcuri C, Barlattani A. Treatment of ectopic mandibular second molar with titanium miniscrews. Am J Orthod Dentofacial Orthop 2004;126(1):113-7.

Greco M, Meddis V, Giancotti A. The G-chain and miniscrew anchorage: simple mechanics for molar uprighting. J Clin Orthod 2012;46(1):24-5.

Lee KJ, Park YC, Hwang WS, Seong EH. Uprighting mandibular second molars with direct miniscrew anchorage. J Clin Orthod 2007;41(10):627-35.

Alfawzan AA. Mandibular Molars Uprighting Using Retromolar Temporary Anchorage Devices. Am J Sci 2018;14(11):1-3.

Deshmukh S, Kshirsagar R. Evaluation of the periodontal status of uprighted mandibular second molars using microscrews placed in the retromolar area: A comparison of two surgical techniques. APOS Trends Orthod 2017;7(2):80-6.

Giancotti A, Muzzi F, Santini F, Arcuri C. Miniscrew treatment of ectopic mandibular molars. J Clin Orthod 2003;37(7):380-3.

Schwarz AM. Tissue changes incidental to orthodontic tooth movement. Int J Dent 1932;18(4):331-52.

Hohmann A, Wolfram U, Geiger M, Boryor A, Kober C, Sander C, et al. Correspondences of hydrostatic pressure in periodontal ligament with regions of root resorption: a clinical and a finite element study of the same human teeth. Comput Methods Programs Biomed. 2009;93(2): 155-61.

Dorow C, Sander FG. Development of a model for the simulation of orthodontic load on lower first premolars using the finite element method. J Orofac Orthop 2005; 66(3):208-18.

Kojima Y, Fukui H. Numeric simulations of en-masse space closure with sliding mechanics. Am J Orthod Dentofacial Orthop 2010;138(6):702.e1-.e6.

Kojima Y, Fukui H. Numerical simulation of canine retraction by sliding mechanics. Am J Orthod Dentofacial Orthop 2005;127(5):542-51.

Kojima Y, Mizuno T, Fukui H. A numerical simulation of tooth movement produced by molar uprighting spring. Am J Orthod Dentofacial Orthop 2007;132(5):630-8.

Kojima Y, Takano M, Fukui H, Mizutani N, Hasegawa J. A simple method for calculating the initial tooth mobility and stress distribution in the periodontal ligament. Dent Mater J 1999;18:210-6.

Huang H, Tang W, Yan B, Wu B. Mechanical responses of Periodontal Ligament under a realistic orthodontic loading. Procedia Eng 2012;31:828-33.

Borchers L, Reichart P. Three-dimensional stress distribution around a dental implant at different stages of interface development. J Dent Res 1983;62(2):155-9.

Tanne K, Sakuda M, Burstone CJ. Three-dimensional finite element analysis for stress in the periodontal tissue by orthodontic forces. Am J Orthod Dentofacial Orthop 1987;92(6):499-505.

Toms SR, Eberhardt AW. A nonlinear finite element analysis of the periodontal ligament under orthodontic tooth loading. Am J Orthod Dentofacial Orthop 2003;123(6):657-65.

Williams K, Edmundson J. Orthodontic tooth movement analysed by the finite element method. Biomaterials 1984;5(6):347-51.

Douglas WH, Sakaguchi RL, DeLong R. Frictional effects between natural teeth in an artificial mouth. Dent Mater J 1985;1(3):115-9.

Murakami N, Wakabayashi N. Finite element contact analysis as a critical technique in dental biomechanics: a review. J Prosthodont Res 2014;58(2):92-101.

Bright JA, Rayfield EJ. The response of cranial biomechanical finite element models to variations in mesh density. Anat Rec 2011;294(4):610-20.

Ren Y, Maltha JC, Kuijpers-Jagtman AM. Optimum force magnitude for orthodontic tooth movement: a systematic literature review. Angle Orthod 2003;73(1):86-92.

Viecilli RF. Stress, Strain, and the biological response. In: Leah H, editor. The Biomechanical Foundation of clinical orthodontics. 1st ed. Hanover park: Quintessence Publishing; 2015. p. 209-26.

Yousefian J, Firouzian F, Shanfeld J, Ngan P, Lanese R, Davidovitch Z. A new experimental model for studying the response of periodontal ligament cells to hydrostatic pressure. Am J Orthod Dentofacial Orthop 1995;108(4): 402-9.

Kim KJ, Park JH, Kim MJ, Jang HI, Chae JM. Posterior available space for uprighting horizontally impacted mandibular second molars using orthodontic microimplant anchorage. Int J Clin Pediatr Dent 2019;43(1):56-63.

Field C, Ichim I, Swain MV, Chan E, Darendeliler MA, Li W, et al. Mechanical responses to orthodontic loading: a 3-dimensional finite element multi-tooth model. Am J Orthod Dentofacial Orthop 2009;135(2):174-81.

Hohmann A, Wolfram U, Geiger M, Boryor A, Sander C, Faltin R, et al. Periodontal ligament hydrostatic pressure with areas of root resorption after application of a continuous torque moment. Angle Orthod 2007;77(4):653-9.

Smith RJ, Burstone CJ. Mechanics of tooth movement. Am J Orthod 1984;85(4):294-307.

Burstone C. Centers of resistance of the human mandibular molar. J Dent Res 1981;60:515.

Johnson JV, Quirk GP. Surgical repositioning of impacted mandibular second molar teeth. Am J Orthod Dentofacial Orthop 1987;91(3):242-51.

Geng J-P, Tan KB, Liu G-R. Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent 2001;85(6):585-98.

Piccioni MAR, Campos EA, Saad JRC, de Andrade MF, Galvão MR, Rached AA. Application of the finite element method in Dentistry. Rev Bras Odontol 2013;10(4):369-77.

Mohammed S, Desai H. Basic concepts of finite element analysis and its applications in dentistry: An overview. Int J Dent Hyg 2014:1-5.

Cattaneo P, Dalstra M, Melsen B. The finite element method: a tool to study orthodontic tooth movement. J Dent Res 2005;84(5):428-33.

Davidovitch Z. Tooth movement. Crit Rev Oral Biol Med 1991;2(4):411-50.

Melsen B, Cattaneo PM, Dalstra M, Kraft DC. The importance of force levels in relation to tooth movement. Semin Orthod 2007;13(4):220-33.

Huang H, Tang W, Yan B, Wu B, Cao D. Mechanical responses of the periodontal ligament based on an exponential hyperelastic model: a combined experimental and finite element method. Comput Methods Biomech Biomed Eng Imaging Vis. 2016;19(2):188-98.

Wakabayashi N, Ona M, Suzuki T, Igarashi Y. Nonlinear finite element analyses: advances and challenges in dental applications. J Dent 2008;36(7):463-71.