Intrusion of Maxillary Posterior Teeth with Miniscrew Anchorage: A Finite Element Study

Main Article Content

Vanichaya Tangsumroengvong
Virush Patanaporn
Chaiy Rungsiyakul
Hadsamanan Chalermwong

Abstract

The purposes of this study were to evaluate the displacement pattern of all maxillary teeth and the von Mises stress distribution in the periodontal ligament when using different maxillary posterior intrusion mechanics with miniscrew anchorage, analyzed using a finite element method. Finite element models of maxillary teeth with periodontal ligament and alveolar bone were constructed. For each pattern of mechanics, a 100-g of intrusion force was applied and distributed to the miniscrew on the buccal and palatal sides. In Model 1, one miniscrew was inserted between the roots of the first and second molar teeth on the buccal side. In Model 2, one miniscrew was placed on the buccal side and a transpalatal arch (TPA) connected the first molars. In Model 3, two miniscrews were placed between the roots of the first and second molar teeth, one on the buccal and one on the palatal sides. The stress distribution in the periodontal ligament and the displacement of the teeth were analyzed using ABAQUS software. The result showed that the posterior teeth in Model 1 were intruded and tipped buccally and the overall stress values were highest. In Model 2, the posterior teeth were intruded along the long axis with no tipping. The overall stress values were lower than in other model. In Model 3, the posterior teeth were intruded and slightly tipped palatally. In all models, the anterior teeth were slightly extruded and had a low stress concentration in the PDL. In conclusion, posterior tooth intrusion with one miniscrew on the buccal side with a TPA provided balanced intrusion with less concentration of stress in the PDL than did the other types of mechanics.

Article Details

How to Cite
1.
Tangsumroengvong V, Patanaporn V, Rungsiyakul C, Chalermwong H. Intrusion of Maxillary Posterior Teeth with Miniscrew Anchorage: A Finite Element Study. Khon Kaen Dent J [Internet]. 2021 Mar. 28 [cited 2024 Dec. 21];24(1):91-101. Available from: https://he01.tci-thaijo.org/index.php/KDJ/article/view/244216
Section
Articles
Share |

References

Araújo TM, Nascimento MHA, Franco FCM, Bittencourt MAV. Tooth intrusion using mini-implants. Dental Press J Orthod 2008;13(5):36-48.

Nanda RS, Tosun YS. Biomechanics in orthodontics principle and practice. 1sted. Hanover Park:Quintessence Publishing; 2010:1-145.

Iscan HN, Sarisoy L. Comparison of the effects of passive posterior bite-blocks with different construction bites on the craniofacial and dentoalveolar structures. Am J Orthod Dentofacial Orthop 1997;112(2):171-8.

Kim YH. Anterior openbite and its treatment with multiloop edgewise archwire. Angle Orthod 1987;57(4): 290-321.

Chang YJ, Lee HS, Chun YS. Microscrew anchorage for molar intrusion. J Clin Orthod 2004;38(6):325-30.

Cambiano AO, Janson G, Lorenzoni DC, Garib DG, Davalos DT. Nonsurgical treatment and stability of an adult with a severe anterior open-bite malocclusion. J Orthod Sci 2018;7(2):1-9.

Carrillo R, Rossouw PE, Franco PF, Opperman LA, Buschang PH. Intrusion of multiradicular teeth and related root resorption with mini-screw implant anchorage: a radiographic evaluation. Am J Orthod Dentofacial Orthop 2007;132(5):647-55.

Kravitz ND, Kusnoto B, Tsay TP, Hohlt WF. The use of temporary anchorage devices for molar intrusion. J Am Dent Assoc 2007;138(1):56-64.

Park HS, Jang BK, Kyung HM. Maxillary molar intrusion with micro-implant anchorage (MIA). Aust Orthod J 2005;21(2):129-35.

Park YC, Lee SY, Kim DH, Jee SH. Intrusion of posterior teeth using mini-screw implants. Am J Orthod Dentofacial Orthop 2003;123(6):690-4.

Umemori M, Sugawara J, Mitani H, Nagasaka H, Kawamura H. Skeletal anchorage system for open-bite correction. American Journal of Orthodontics and Dentofacial Orthopedics 1999;115(2):166-74.

Ludwig B, Baumgaertel S, Böhm B, Bowman SJ, Glasl B, Johnston LE, et al. Fields of application of mini-implants. In: Wilmes B, editor. Mini-implants in Orthodontics innovation anchorage concepts. Berlin: Quintessence; 2007:91-122.

Argumedo AG, Prado PSC, Núñez EG. Open bite correction through molar intrusion with mini-implants. Rev Mex de Ortod 2014;2(4):e251-60.

Cifter M, Sarac M. Maxillary posterior intrusion mechanics with mini-implant anchorage evaluated with the finite element method. Am J Orthod Dentofacial Orthop 2011;140(5):233-41.

Pekhale N, Maheshwari A, Kumar M, Kerudi VV, Patil H, Patil B. Evaluation of stress patterns on maxillary posterior segment when intruded with mini implant anchorage: a three-dimensional finite element study. APOS Trends Orthod 2016;6(1):18-23.

Pheerawanitchakun P, Patanaporn V, Rungsiyakull C. Evaluation of the magnitudes of force and patterns for the intrusion of maxillary first molar teeth with mini-screw anchorage, analyzed using the finite element method. CM Dent J 2018;35(1):95-111.

Marya A, David G, Eugenio MA. Finite element analysis and its role in orthodontics. Adv Dent & Oral Health 2016;2(2):5-6.

Cattaneo PM, Dalstra M, Melsen B. The finite element method: a tool to study orthodontic tooth movement. J Dent Res 2005;84(5):428-33.

Mehta J. Finite element method: an overview. J Med Dent Sci 2016;15(3):38-41.

Jagota V, Sethi APS, Kumar K. Finite element method: An overview. Walailak J Sci & Tech 2013;10(1):1-8.

Rohan M, Varghese KP, Tariq A. Finite element analysis and its applications in orthodontics. APOS Trends Orthod 2011;2(3).

Hemanth M, Lodaya SD. Orthodontic force distribution: a three-dimensional finite element analysis. World J Dent 2010;1(3):159-62.

Sung EH, Kim SJ, Chun YS, Park YC, Yu HS, Lee KJ. Distalization pattern of whole maxillary dentition according to force application points. Korean J Orthod 2015;45(1):20-8.

Mohammed SD, Desai H. Basic concepts of finite flement analysis and its applications in dentistry:An overview. J Oral Hyg Health 2014;2(5):156-60.

Desai SR, Harshada SH. Finite element analysis: basics and its applications in dentistry. Indian J Dent Sci 2012; 4(1):60-5.

Geramy A, Sodagar A, Hassanpour M. Three-dimensional analysis using finite element method of anterior teeth inclination and center of resistance location. Chin J Dent Res 2014;1:37-42.

Jeong GM, Sung SJ, Lee KJ, Chun YS, Mo SS. Finite-element investigation of the center of resistance of the maxillary dentition. Korean J Orthod 2009;39(2):83-94.

Toms SR, Eberhardt AW. A nonlinear finite element analysis of the periodontal ligament under orthodontic tooth loading. Am J Orthod Dentofacial Orthop 2003; 123(6):657-65.

Tanne K, Sakuda M, Burstone CJ. Three-dimensional finite element analysis for stress in the periodontal tissue by orthodontic forces. Am J Orthod Dentofacial Orthop 1987;92(6):499-505.

Huang H, Tang W, Yan B, Wu B. Mechanical responses of periodontal ligament under a realistic orthodontic loading. Procedia Eng 2012;31:828-33.

Mulligan TF. Common sense mechanics. J Clin Orthod 1980;14(3):12-26.

Burstone CJ, Choy K. The biomechanical foundation of clinical orthodontics. Hanover Park:Quintessence Publishing; 2015:580.

Chang HP, Tseng YC. Miniscrew implant applications in contemporary orthodontics. Kaohsiung J Med Sci 2014;30(3):111-5.

Kuroda S, Tanaka E. Risks and complications of miniscrew anchorage in clinical orthodontics. Jpn Dent Sci Rev 2014;50(4):79-85.

Piccioni MA, Campos EA, Saad JRC, Andrade MFD, Galvão MR, Rached AA. Application of the finite element method in Dentistry. Rev Bras Odontol 2013; 10(4):369-77.

Ryu WK, Park JH, Tai K, Kojima Y, Lee Y, Chae JM. Prediction of optimal bending angles of a running loop to achieve bodily protraction of a molar using the finite element method. Korean J Orthod 2018;48(1):3-10.

Song JW, Lim JK, Lee KJ, Sung SJ, Chun YS, Mo SS. Finite element analysis of maxillary incisor displacement during en-masse retraction according to orthodontic mini-implant position. Korean J Orthod 2016;46(4):242-52.

Qian L, Todo M, Morita Y, Matsushita Y, Koyano K. Deformation analysis of the periodontium considering the viscoelasticity of the periodontal ligament. Dent Mater 2009;25(10):1285-92.

Natali AN, Pavan PG, Scarpa C. Numerical analysis of tooth mobility: formulation of a non-linear constitutive law for the periodontal ligament. Dent Mater 2004;20(7):623-9.

Singh JR, Kambalyal P, Jain M, Khandelwal P. Revolution in orthodontics: finite element analysis. J Int Soc Prev Community Dent 2016;6(2):110-4.

Srirekha A, Bashetty K. Infinite to finite: an overview of finite element analysis. Indian J Dent Res 2010;21(3):425.

Sun W, Xia K, Huang X, Cen X, Liu Q, Liu J. Knowledge of orthodontic tooth movement through the maxillary sinus: a systematic review. BMC Oral Health 2018;18(1):91.

Chaiyasang S, Deesamer S. Orthodontic tooth movement through maxillary sinus. Srinagarind Med J 2010;25(2):156-61.

Yao CCJ, Wu CB, Wu HY, Kok SH, Frank Chang HF, Chen YJ. Intrusion of the overerupted upper left first and second molars by mini-implants with partial-fixed orthodontic appliances: a case report. Angle Orthod 2004;74(4):550-7.

Kravitz ND, Kusnoto B, Tsay PT, Hohlt WF. Intrusion of overerupted upper first molar using two orthodontic miniscrews. A case report. Angle Orthod 2007;77(5): 915-22.

Palumbo A. The anatomy and physiology of the healthy periodontium. In: Panagakos F, editor. Gingival diseases -Their aetiology, prevention and treatment. Rijeka:In Tech;2011:1-22.

Baumgaertel S, Hans MG. Buccal cortical bone thickness for mini-implant placement. Am J Orthod Dentofacial Orthop 2009;136(2):230-5.

Cassetta M, Sofan AA, Altieri F, Barbato E. Evaluation of alveolar cortical bone thickness and density for orthodontic mini-implant placement. J Clin Exp Dent 2013;5(5):e245-52.