Fibroblast Growth Factor-23 and Cardiovascular Disease in Chronic Kidney Disease

Main Article Content

Komchan Utamawatin
Bancha Satirapoj

Abstract

Cardiovascular disease is the leading cause of death in patients with chronic kidney disease (CKD). Fibroblast growth factor 23 (FGF23) is a medium-sized uremic toxin that begins to accumulate as early as CKD stage 2, increasing progressively as glomerular filtration rate declines. This accumulation results from both increased production and reduced clearance of FGF23. The molecule binds to receptors on cardiac myocytes, triggering fibrotic signaling pathways that lead to myocardial hypertrophy and fibrosis. This cardiac remodeling heightens the risk of arrhythmias, heart failure, and cardiovascular mortality in CKD patients. Although significant progress has been made in understanding the regulation and biological actions of FGF23, effective treatments to reduce FGF23 levels or reverse cardiac remodeling remain limited. This article reviews the current understanding of FGF23 regulation and explores potential strategies to reduce its levels in order to improve cardiovascular outcomes in patients with CKD.

Article Details

How to Cite
Utamawatin, K., & Satirapoj, B. (2025). Fibroblast Growth Factor-23 and Cardiovascular Disease in Chronic Kidney Disease. Journal of the Nephrology Society of Thailand, 31(3), 208–219. https://doi.org/10.63555/jnst.2025.279894
Section
Review Article

References

Clinkenbeard EL, Cass TA, Ni P, Hum JM, Bellido T, Allen MR, et al. Conditional Deletion of Murine Fgf23: Interruption of the Normal Skeletal Responses to Phosphate Challenge and Rescue of Genetic Hypophosphatemia. J Bone Miner Res 2016;31(6):1247–57. doi: 10.1002/jbmr.2792.

Clinkenbeard EL, Hanudel MR, Stayrook KR, Appaiah HN, Farrow EG, Cass TA, et al. Erythropoietin stimulates murine and human fibroblast growth factor-23, revealing novel roles for bone and bone marrow. Haematologica 2017;102(11):e427–e30. doi: 10.3324/haematol.2017.167882.

Agoro R, White KE. Regulation of FGF23 production and phosphate metabolism by bone-kidney interactions. Nat Rev Nephrol 2023;19(3):185–93. doi: 10.1038/s41581-022-00665-x.

Rodriguez-Ortiz ME, Lopez I, Munoz-Castaneda JR, Martinez-Moreno JM, Ramirez AP, Pineda C, et al. Calcium deficiency reduces circulating levels of FGF23. J Am Soc Nephrol 2012;23(7):1190–7. doi: 10.1681/ASN.2011101006.

Akiyama KI, Miura Y, Hayashi H, Sakata A, Matsumura Y, Kojima M, et al. Calciprotein particles regulate fibroblast growth factor-23 expression in osteoblasts. Kidney Int 2020;97(4):702–12. doi: 10.1016/j.kint.2019.10.019.

Kuro OM. The Klotho proteins in health and disease. Nat Rev Nephrol 2019;15(1):27–44. doi: 10.1038/s41581-018-0078-3.

Edmonston D, Wolf M. FGF23 at the crossroads of phosphate, iron economy and erythropoiesis. Nat Rev Nephrol 2020;16(1):7–19. doi: 10.1038/s41581-019-0189-5.

Musgrove J, Wolf M. Regulation and Effects of FGF23 in Chronic Kidney Disease. Annu Rev Physiol 2020;82:365–90. doi: 10.1146/annurev-physiol-021119-034650.

de Las Rivas M, Paul Daniel EJ, Narimatsu Y, Companon I, Kato K, Hermosilla P, et al. Molecular basis for fibroblast growth factor 23 O-glycosylation by GalNAc-T3. Nat Chem Biol 2020;16(3):351–60. doi: 10.1038/s41589-019-0444-x.

Tagliabracci VS, Engel JL, Wiley SE, Xiao J, Gonzalez DJ, Nidumanda Appaiah H, et al. Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis. Proc Natl Acad Sci U S A 2014;111(15):5520–5. doi: 10.1073/pnas.1402218111.

Vervloet M. Renal and extrarenal effects of fibroblast growth factor 23. Nat Rev Nephrol 2019;15(2):109–20. doi: 10.1038/s41581-018-0087-2.

Edmonston D, Grabner A, Wolf M. FGF23 and klotho at the intersection of kidney and cardiovascular disease. Nat Rev Cardiol 2024;21(1):11–24. doi: 10.1038/s41569-023-00903-0.

Isakova T, Wahl P, Vargas GS, Gutierrez OM, Scialla J, Xie H, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 2011;79(12):1370–8. doi: 10.1038/ki.2011.47.

Bleyer AJ, Russell GB, Satko SG. Sudden and cardiac death rates in hemodialysis patients. Kidney Int 1999;55(4):1553–9. doi: 10.1046/j.1523-1755.1999.00391.x.

Sarnak MJ, Amann K, Bangalore S, Cavalcante JL, Charytan DM, Craig JC, et al. Chronic Kidney Disease and Coronary Artery Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2019;74(14):1823–38. doi: 10.1016/j.jacc.2019.08.1017.

Verbueken D, Moe OW. Strategies to lower fibroblast growth factor 23 bioactivity. Nephrol Dial Transplant 2022;37(10):1800–7. doi: 10.1093/ndt/gfab012.

Isakova T, Cai X, Lee J, Xie D, Wang X, Mehta R, et al. Longitudinal FGF23 Trajectories and Mortality in Patients with CKD. J Am Soc Nephrol 2018;29(2):579–90. doi: 10.1681/ASN.2017070772.

Gutierrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 2008;359(6):584–92. doi: 10.1056/NEJMoa0706130.

Isakova T, Xie H, Yang W, Xie D, Anderson AH, Scialla J, et al. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA 2011;305(23):2432–9. doi: 10.1001/jama.2011.826.

Marthi A, Donovan K, Haynes R, Wheeler DC, Baigent C, Rooney CM, et al. Fibroblast Growth Factor-23 and Risks of Cardiovascular and Noncardiovascular Diseases: A Meta-Analysis. J Am Soc Nephrol 2018;29(7):2015–27. doi: 10.1681/ASN.2017121334.

Gao S, Xu J, Zhang S, Jin J. Meta-Analysis of the Association between Fibroblast Growth Factor 23 and Mortality and Cardiovascular Events in Hemodialysis Patients. Blood Purif 2019;47 Suppl 1(Suppl 1):24–30. doi: 10.1159/000496220.

Patel N, Yaqoob MM, Aksentijevic D. Cardiac metabolic remodelling in chronic kidney disease. Nat Rev Nephrol 2022;18(8):524–37. doi: 10.1038/s41581-022-00576-x.

Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, et al. FGF23 induces left ventricular hypertrophy. J Clin Invest 2011;121(11):4393–408. doi: 10.1172/JCI46122.

Verkaik M, Oranje M, Abdurrachim D, Goebel M, Gam Z, Prompers JJ, et al. High Fibroblast Growth Factor 23 concentrations in experimental renal failure impair calcium handling in cardiomyocytes. Physiol Rep 2018;6(7):e13591. doi: 10.14814/phy2.13591.

Patel RB, Ning H, de Boer IH, Kestenbaum B, Lima JAC, Mehta R, et al. Fibroblast Growth Factor 23 and Long-Term Cardiac Function: The Multi-Ethnic Study of Atherosclerosis. Circ Cardiovasc Imaging 2020;13(11):e011925. doi: 10.1161/CIRCIMAGING.120.011925.

Gutierrez OM, Januzzi JL, Isakova T, Laliberte K, Smith K, Collerone G, et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation 2009;119(19):2545–52. doi: 10.1161/CIRCULATIONAHA. 108.844506.

Negishi K, Kobayashi M, Ochiai I, Yamazaki Y, Hasegawa H, Yamashita T, et al. Association between fibroblast growth factor 23 and left ventricular hypertrophy in maintenance hemodialysis patients. Comparison with B-type natriuretic peptide and cardiac troponin T. Circ J 2010;74(12):2734–40. doi: 10.1253/circj.cj-10-0355.

Halim A, Burney HN, Li X, Li Y, Tomkins C, Siedlecki AM, et al. FGF23 and Cardiovascular Structure and Function in Advanced Chronic Kidney Disease. Kidney360 2022;3(9):1529–41. doi: 10.34067/KID.0002192022.

Mehta R, Cai X, Lee J, Scialla JJ, Bansal N, Sondheimer JH, et al. Association of Fibroblast Growth Factor 23 With Atrial Fibrillation in Chronic Kidney Disease, From the Chronic Renal Insufficiency Cohort Study. JAMA Cardiol 2016;1(5):548–56. doi: 10.1001/jamacardio.2016.1445.

Turakhia MP, Blankestijn PJ, Carrero JJ, Clase CM, Deo R, Herzog CA, et al. Chronic kidney disease and arrhythmias: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Eur Heart J 2018;39(24):2314–25. doi: 10.1093/eurheartj/ehy060.

Mathew JS, Sachs MC, Katz R, Patton KK, Heckbert SR, Hoofnagle AN, et al. Fibroblast growth factor-23 and incident atrial fibrillation: the Multi-Ethnic Study of Atherosclerosis (MESA) and the Cardiovascular Health Study (CHS). Circulation 2014;130(4):298–307. doi: 10.1161/CIRCULATIONAHA.113.005499.

Graves JM, Vallejo JA, Hamill CS, Wang D, Ahuja R, Patel S, et al. Fibroblast growth factor 23 (FGF23) induces ventricular arrhythmias and prolongs QTc interval in mice in an FGF receptor 4-dependent manner. Am J Physiol Heart Circ Physiol 2021;320(6):H2283–H94. doi: 10.1152/ajpheart.00798.2020.

Law JP, Price AM, Pickup L, Radhakrishnan A, Weston C, Jones AM, et al. Clinical Potential of Targeting Fibroblast Growth Factor-23 and alphaKlotho in the Treatment of Uremic Cardiomyopathy. J Am Heart Assoc 2020;9(7):e016041. doi: 10.1161/JAHA.120.016041.

Tsai WC, Wu HY, Peng YS, Hsu SP, Chiu YL, Chen HY, et al. Effects of lower versus higher phosphate diets on fibroblast growth factor-23 levels in patients with chronic kidney disease: a systematic review and meta-analysis. Nephrol Dial Transplant 2018;33(11):1977–83. doi: 10.1093/ndt/gfy005.

Isakova T, Ix JH, Sprague SM, Raphael KL, Fried L, Gassman JJ, et al. Rationale and Approaches to Phosphate and Fibroblast Growth Factor 23 Reduction in CKD. J Am Soc Nephrol 2015;26(10):2328–39. doi: 10.1681/ASN.2015020117.

Bouma-de Krijger A, de Roij van Zuijdewijn CLM, Nube MJ, Grooteman MPC, Vervloet MG, Group CS. Change in FGF23 concentration over time and its association with all-cause mortality in patients treated with haemodialysis or haemodiafiltration. Clin Kidney J 2021;14(3):891–7. doi: 10.1093/ckj/sfaa028.

Cupisti A, Gallieni M, Rizzo MA, Caria S, Meola M, Bolasco P. Phosphate control in dialysis. Int J Nephrol Renovasc Dis 2013;6:193–205. doi: 10.2147/IJNRD.S35632.

Moe SM, Chertow GM, Parfrey PS, Kubo Y, Block GA, Correa-Rotter R, et al. Cinacalcet, Fibroblast Growth Factor-23, and Cardiovascular Disease in Hemodialysis: The Evaluation of Cinacalcet HCl Therapy to Lower Cardiovascular Events (EVOLVE) Trial. Circulation 2015;132(1):27–39. doi: 10.1161/CIRCULATIONAHA.114.013876.

Shalhoub V, Shatzen EM, Ward SC, Davis J, Stevens J, Bi V, et al. FGF23 neutralization improves chronic kidney diseaseassociated hyperparathyroidism yet increases mortality. J Clin Invest 2012;122(7):2543–53. doi: 10.1172/JCI61405.

Di Iorio B, Di Micco L, Torraca S, Sirico ML, Russo L, Pota A, et al. Acute effects of very-low-protein diet on FGF23 levels: a randomized study. Clin J Am Soc Nephrol 2012;7(4):581–7. doi: 10.2215/CJN.07640711.

Moe SM, Zidehsarai MP, Chambers MA, Jackman LA, Radcliffe JS, Trevino LL, et al. Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin J Am Soc Nephrol 2011;6(2):257–64. doi: 10.2215/CJN.05040610.

Oliveira RB, Cancela AL, Graciolli FG, Dos Reis LM, Draibe SA, Cuppari L, et al. Early control of PTH and FGF23 in normophosphatemic CKD patients: a new target in CKD-MBD therapy? Clin J Am Soc Nephrol 2010;5(2):286–91. doi: 10.2215/CJN.05420709.

Chue CD, Townend JN, Moody WE, Zehnder D, Wall NA, Harper L, et al. Cardiovascular effects of sevelamer in stage 3 CKD. J Am Soc Nephrol 2013;24(5):842–52. doi: 10.1681/ASN.2012070719.

Isakova T, Barchi-Chung A, Enfield G, Smith K, Vargas G, Houston J, et al. Effects of dietary phosphate restriction and phosphate binders on FGF23 levels in CKD. Clin J Am Soc Nephrol 2013;8(6):1009–18. doi: 10.2215/CJN.09250912.

Ix JH, Isakova T, Larive B, Raphael KL, Raj DS, Cheung AK, et al. Effects of Nicotinamide and Lanthanum Carbonate on Serum Phosphate and Fibroblast Growth Factor-23 in CKD: The COMBINE Trial. J Am Soc Nephrol 2019;30(6):1096–108. doi: 10.1681/ASN.2018101058.

Block GA, Rosenbaum DP, Yan A, Greasley PJ, Chertow GM, Wolf M. The effects of tenapanor on serum fibroblast growth factor 23 in patients receiving hemodialysis with hyperphosphatemia. Nephrol Dial Transplant 2019;34(2):339–46. doi: 10.1093/ndt/gfy061.

Block GA, Fishbane S, Rodriguez M, Smits G, Shemesh S, Pergola PE, et al. A 12-week, double-blind, placebo-controlled trial of ferric citrate for the treatment of iron deficiency anemia and reduction of serum phosphate in patients with CKD Stages 3-5. Am J Kidney Dis 2015;65(5):728–36. doi: 10.1053/j.ajkd.2014.10.014.

Block GA, Block MS, Smits G, Mehta R, Isakova T, Wolf M, et al. A Pilot Randomized Trial of Ferric Citrate Coordination Complex for the Treatment of Advanced CKD. J Am Soc Nephrol 2019;30(8):1495–504. doi: 10.1681/ASN.2018101016.

Zaritsky J, Rastogi A, Fischmann G, Yan J, Kleinman K, Chow G, et al. Short daily hemodialysis is associated with lower plasma FGF23 levels when compared with conventional hemodialysis. Nephrol Dial Transplant 2014;29(2):437–41. doi: 10.1093/ndt/gft382.

Wolf M, Block GA, Chertow GM, Cooper K, Fouqueray B, Moe SM, et al. Effects of etelcalcetide on fibroblast growth factor 23 in patients with secondary hyperparathyroidism receiving hemodialysis. Clin Kidney J 2020;13(1):75–84. doi: 10.1093/ckj/sfz034.