Non-Albuminuric Diabetic Kidney Disease
Main Article Content
Abstract
Diabetic kidney disease (DKD) is a major cause of end-stage kidney disease. The natural history of DKD, as proposed decades ago, mandated a period of albuminuria prior to glomerular filtration rate (GFR) decline, which has been challenged by recent findings. Non-albuminuric DKD, as the name implies, describes a phenotype of DKD in which impaired GFR occurs without significant albuminuria. Patients with non-albuminuric DKD exhibit different characteristics, such as a higher tendency in females, lower severity of associated comorbidities, well-controlled blood sugar, and a reduced rate of cardiovascular disease and mortality. These characteristics indicate a distinct pathogenesis, as supported by a growing body of evidence from biomarkers and histopathology. Nonetheless, no medication specifically designed for such a subgroup of patients exists. The principal treatment remains controlling risk factors for both kidney and cardiovascular disease.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This article is published under CC BY-NC-ND 4.0 license, which allows for non-commercial reuse of the published paper as long as the published paper is fully attributed. Anyone can share (copy and redistribute) the material in any medium or format without having to ask permission from the author or the Nephrology Society of Thailand.
References
Scilletta S, Di Marco M, Miano N, Filippello A, Di Mauro S, Scamporrino A, et al. Update on Diabetic Kidney Disease (DKD): Focus on Non-Albuminuric DKD and Cardiovascular Risk. Biomolecules 2023;13(5). doi: 10.3390/biom13050752.
THAILAND RENAL REPLACEMENT THERAPY YEAR 2020 [Internet]. 2020.
Afkarian M, Sachs MC, Kestenbaum B, Hirsch IB, Tuttle KR, Himmelfarb J, et al. Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol 2013;24(2):302-8. doi: 10.1681/asn.2012070718.
Doshi SM, Friedman AN. Diagnosis and Management of Type 2 Diabetic Kidney Disease. Clin J Am Soc Nephrol 2017;12(8):1366-73. doi: 10.2215/cjn.11111016.
Chen C, Wang C, Hu C, Han Y, Zhao L, Zhu X, et al. Normoalbuminuric diabetic kidney disease. Front Med 2017;11(3):310-8. doi: 10.1007/s11684-017-0542-7.
Lane PH, Steffes MW, Mauer SM. Glomerular structure in IDDM women with low glomerular filtration rate and normal urinary albumin excretion. Diabetes 1992;41(5):581-6. doi: 10.2337/diab.41.5.581.
Retnakaran R, Cull CA, Thorne KI, Adler AI, Holman RR. Risk factors for renal dysfunction in type 2 diabetes: U.K. Prospective Diabetes Study 74. Diabetes 2006;55(6):1832-9. doi: 10.2337/db05-1620.
Shi S, Ni L, Gao L, Wu X. Comparison of Nonalbuminuric and Albuminuric Diabetic Kidney Disease Among Patients With Type 2 Diabetes: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne) 2022;13:871272. doi: 10.3389/fendo.2022.871272.
Bhalla V, Zhao B, Azar KM, Wang EJ, Choi S, Wong EC, et al. Racial/ethnic differences in the prevalence of proteinuric and nonproteinuric diabetic kidney disease. Diabetes Care 2013;36(5):1215-21. doi: 10.2337/dc12-0951.
Jin Q, Luk AO, Lau ESH, Tam CHT, Ozaki R, Lim CKP, et al. Nonalbuminuric Diabetic Kidney Disease and Risk of All-Cause Mortality and Cardiovascular and Kidney Outcomes in Type 2 Diabetes: Findings From the Hong Kong Diabetes Biobank. Am J Kidney Dis 2022;80(2):196-206.e1. doi: 10.1053/j.ajkd.2021.11.011.
Oshima M, Shimizu M, Yamanouchi M, Toyama T, Hara A, Furuichi K, et al. Trajectories of kidney function in diabetes: a clinicopathological update. Nat Rev Nephrol 2021;17(11):740-50. doi: 10.1038/s41581-021-00462-y.
Perkins BA, Ficociello LH, Silva KH, Finkelstein DM, Warram JH, Krolewski AS. Regression of microalbuminuria in type 1 diabetes. N Engl J Med 2003;348(23):2285-93. doi: 10.1056/NEJMoa021835.
Lee K, He JC. AKI-to-CKD transition is a potential mechanism for non-albuminuric diabetic kidney disease. Fac Rev 2022;11:21. doi: 10.12703/r/11-21.
Satirapoj B. Review on pathophysiology and treatment of diabetic kidney disease. J Med Assoc Thai 2010;93 Suppl 6:S228-41.
Anders HJ, Huber TB, Isermann B, Schiffer M. CKD in diabetes: diabetic kidney disease versus nondiabetic kidney disease. Nat Rev Nephrol 2018;14(6):361-77. doi: 10.1038/s41581-018-0001-y.
Lambers Heerspink HJ, Gansevoort RT. Albuminuria Is an Appropriate Therapeutic Target in Patients with CKD: The Pro View. Clin J Am Soc Nephrol 2015;10(6):1079-88. doi: 10.2215/cjn.11511114.
Ekinci EI, Jerums G, Skene A, Crammer P, Power D, Cheong KY, et al. Renal structure in normoalbuminuric and albuminuric patients with type 2 diabetes and impaired renal function. Diabetes Care 2013;36(11):3620-6. doi: 10.2337/dc12-2572.
Boeri D, Derchi LE, Martinoli C, Simoni G, Sampietro L, Storace D, et al. Intrarenal arteriosclerosis and impairment of kidney function in NIDDM subjects. Diabetologia 1998;41(1):121-4. doi: 10.1007/s001250050877.
Rosolowsky ET, Ficociello LH, Maselli NJ, Niewczas MA, Binns AL, Roshan B, et al. High-normal serum uric acid is associated with impaired glomerular filtration rate in nonproteinuric patients with type 1 diabetes. Clin J Am Soc Nephrol 2008;3(3):706-13. doi: 10.2215/cjn.04271007.
Sánchez-Lozada LG, Lanaspa MA, Cristóbal-García M, García-Arroyo F, Soto V, Cruz-Robles D, et al. Uric acid-induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP concentrations. Nephron Exp Nephrol 2012;121(3-4):e71-8. doi: 10.1159/000345509.
Niewczas MA, Ficociello LH, Johnson AC, Walker W, Rosolowsky ET, Roshan B, et al. Serum concentrations of markers of TNFalpha and Fas-mediated pathways and renal function in nonproteinuric patients with type 1 diabetes. Clin J Am Soc Nephrol 2009;4(1):62-70. doi: 10.2215/cjn.03010608.
Klimontov VV, Korbut AI, Orlov NB, Dashkin MV, Konenkov VI. Multiplex Bead Array Assay of a Panel of Circulating Cytokines and Growth Factors in Patients with Albuminuric and Non-AlbuminuricDiabetic Kidney Disease. J Clin Med 2020;9(9). doi: 10.3390/jcm9093006.
Deng L, Li W, Xu G. Update on pathogenesis and diagnosis flow of normoalbuminuric diabetes with renal insufficiency. Eur J Med Res 2021;26(1):144. doi: 10.1186/s40001-021-00612-9.
Chidambaram M, Duncan JA, Lai VS, Cattran DC, Floras JS, Scholey JW, et al. Variation in the renin angiotensin system throughout the normal menstrual cycle. J Am Soc Nephrol 2002;13(2):446-52. doi: 10.1681/asn.V132446.
Yu SM, Bonventre JV. Acute Kidney Injury and Progression of Diabetic Kidney Disease. Adv Chronic Kidney Dis 2018;25(2):166-80. doi: 10.1053/j.ackd.2017.12.005.
Onuigbo MA, Agbasi N. Diabetic Nephropathy and CKDAnalysis of Individual Patient Serum Creatinine Trajectories: A Forgotten Diagnostic Methodology for Diabetic CKD Prognostication and Prediction. J Clin Med 2015;4(7):1348-68. doi: 10.3390/jcm4071348.
KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int 2022;102(5s):S1-s127. doi: 10.1016/j.kint.2022.06.008.
Rico-Fontalvo J, Aroca-Martínez G, Daza-Arnedo R, Cabrales J, Rodríguez-Yanez T, Cardona-Blanco M, et al. Novel Biomarkers of Diabetic Kidney Disease. Biomolecules 2023;13(4). doi: 10.3390/biom13040633.
Vogt L, Waanders F, Boomsma F, de Zeeuw D, Navis G. Effects of dietary sodium and hydrochlorothiazide on the antiproteinuric efficacy of losartan. J Am Soc Nephrol 2008;19(5):999-1007. doi: 10.1681/asn.2007060693.
Satirapoj B. Tubulointerstitial Biomarkers for Diabetic Nephropathy. J Diabetes Res 2018;2018:2852398. doi: 10.1155/2018/2852398.
Wang C, Li C, Gong W, Lou T. New urinary biomarkers for diabetic kidney disease. Biomark Res 2013;1(1):9. doi: 10.1186/2050-7771-1-9.
He P, Bai M, Hu JP, Dong C, Sun S, Huang C. Significance of Neutrophil Gelatinase-Associated Lipocalin as a Biomarker for the Diagnosis of Diabetic Kidney Disease: A Systematic Review and Meta-Analysis. Kidney Blood Press Res 2020;45(4):497-509. doi: 10.1159/000507858.
An N, Wu BT, Yang YW, Huang ZH, Feng JF. Re-understanding and focusing on normoalbuminuric diabetic kidney disease. Front Endocrinol (Lausanne) 2022;13:1077929. doi: 10.3389/fendo.2022.1077929.
Lavoz C, Rayego-Mateos S, Orejudo M, Opazo-Ríos L, Marchant V, Marquez-Exposito L, et al. Could IL-17A Be a Novel Therapeutic Target in Diabetic Nephropathy? J Clin Med 2020;9(1). doi: 10.3390/jcm9010272.
Colhoun HM, Marcovecchio ML. Biomarkers of diabetic kidney disease. Diabetologia 2018;61(5):996-1011. doi: 10.1007/s00125-018-4567-5.
Sen T, Li J, Neuen BL, Neal B, Arnott C, Parikh CR, et al. Effects of the SGLT2 inhibitor canagliflozin on plasma biomarkers TNFR-1, TNFR-2 and KIM-1 in the CANVAS trial. Diabetologia 2021;64(10):2147-58. doi: 10.1007/s00125-021-05512-5.
Navarro-González JF, Mora-Fernández C, Muros de Fuentes M, Chahin J, Méndez ML, Gallego E, et al. Effect of pentoxifylline on renal function and urinary albumin excretion in patients with diabetic kidney disease: the PREDIAN trial. J Am Soc Nephrol 2015;26(1):220-9. doi: 10.1681/asn.2014010012.
Tervaert TW, Mooyaart AL, Amann K, Cohen AH, Cook HT, Drachenberg CB, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol 2010;21(4):556-63. doi: 10.1681/asn.2010010010.
Looker HC, Mauer M, Saulnier PJ, Harder JL, Nair V, Boustany-Kari CM, et al. Changes in Albuminuria But Not GFR are Associated with Early Changes in Kidney Structure in Type 2 Diabetes. J Am Soc Nephrol 2019;30(6):1049-59. doi: 10.1681/asn.2018111166.
Yamanouchi M, Furuichi K, Hoshino J, Ubara Y, Wada T. Nonproteinuric diabetic kidney disease. Clin Exp Nephrol 2020;24(7):573-81. doi: 10.1007/s10157-020-01881-0.
Caramori ML, Fioretto P, Mauer M. Low glomerular filtration rate in normoalbuminuric type 1 diabetic patients: an indicator of more advanced glomerular lesions. Diabetes 2003;52(4):1036-40. doi: 10.2337/diabetes.52.4.1036.
Strippoli GF, Bonifati C, Craig M, Navaneethan SD, Craig JC. Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists for preventing the progression of diabetic kidney disease. Cochrane Database Syst Rev 2006;2006(4):Cd006257. doi: 10.1002/14651858.Cd006257.
Lv J, Perkovic V, Foote CV, Craig ME, Craig JC, Strippoli GF. Antihypertensive agents for preventing diabetic kidney disease. Cochrane Database Syst Rev 2012;12:Cd004136. doi: 10.1002/14651858.CD004136.pub3.
Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet 2022;400(10365):1788-801. doi: 10.1016/s0140-6736(22)02074-8.
Herrington WG, Staplin N, Wanner C, Green JB, Hauske SJ, Emberson JR, et al. Empagliflozin in Patients with Chronic Kidney Disease. N Engl J Med 2023;388(2):117-27. doi: 10.1056/NEJMoa2204233.
Staplin N, Haynes R, Judge PK, Wanner C, Green JB, Emberson J, et al. Effects of empagliflozin on progression of chronic kidney disease: a prespecified secondary analysis from the EMPA-KIDNEY trial. The Lancet Diabetes & Endocrinology. doi: 10.1016/S2213-8587(23)00321-2.
Chun KJ, Jung HH. SGLT2 Inhibitors and Kidney and Cardiac Outcomes According to Estimated GFR and Albuminuria Levels: A Meta-analysis of Randomized Controlled Trials. Kidney Med 2021;3(5):732-44.e1. doi:10.1016/j.xkme.2021.04.009.
Sattar N, Lee MMY, Kristensen SL, Branch KRH, Del Prato S, Khurmi NS, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol 2021;9(10):653-62. doi: 10.1016/s2213-8587(21)00203-5.
Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 2019;394(10193):121-30. doi: 10.1016/s0140-6736(19)31149-3.
Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, et al. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N Engl J Med 2020;383(23):2219-29. doi: 10.1056/NEJMoa2025845.