Novel Therapeutic Advances in β-Thalassemia

“Sapientia maior est quam fatum” (Wisdom is greater than fate)

Authors

  • Sirichai Srichairatanakool Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, thailand
  • Adisak Tantiworawit Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University

DOI:

https://doi.org/10.69898/jhtm.35.2025.275741

Keywords:

β-thalassemia, Novel therapy, Ineffective erythropoiesis, Hematopoietic stem cell transplantation, Gene therapy

Abstract

β-thalassemia is among the most prevalent genetic disorders worldwide, characterized by impaired β-globin production, resulting in ineffective erythropoiesis, the hallmark of the disease. Beyond the conventional treatments, including regular blood transfusions and iron chelation therapy, recent advances in understanding the pathophysiology of β-thalassemia have led to the development of novel therapeutic strategies. Currently, several therapeutic strategies addressing the underlying mechanisms of disease, which include both curative approaches, such as hematopoietic stem cell transplantation (HSCT) and gene therapy, and pharmacological approaches modifying the molecular basis of disease, have been established. While these novel therapies have demonstrated clinically significant efficacy in various studies, there are several challenges in response variability among the patients, accessibility, and long-term safety outcomes which have been mentioned and remained in areas of improvement. In this review, we provide an overview of the novel therapeutic advances in β-thalassemia focusing on the underlying disease mechanisms, their potential therapeutic strategies, and current available treatments that will expand the therapeutic options for thalassemic patients.

Downloads

References

Weatherall DJ,Clegg JB. Inherited haemoglobin disorders: an increasing global health problem. Bull World Health Organ. 2001; 79:704-12.

Rivella S. Ineffective erythropoiesis and thalassemias. Curr Opin Hematol. 2009; 16:187-94.

Taher AT, Weatherall DJ,Cappellini MD. Thalassaemia. Lancet. 2018; 391:155-67.

Viprakasit V,Ekwattanakit S. Clinical Classification, Screening and Diagnosis for Thalassemia. Hematol Oncol Clin North Am. 2018; 32:193-211.

Thalassaemia International F, Cappellini M-D, Farmakis D, Porter J,Taher A. Guidelines for the management of transfusion dependent thalassaemia (TDT). 4th edition. ed. Nicosia: Thalassaemia International Federation; 2021.

Musallam KM, Cappellini MD, Viprakasit V, Kattamis A, Rivella S,Taher AT. Revisiting the non-transfusion-dependent (NTDT) vs. transfusion-dependent (TDT) thalassemia classification 10 years later. Am J Hematol. 2021; 96:E54-E56.

Yuan J, Kannan R, Shinar E, Rachmilewitz EA,Low PS. Isolation, characterization, and immunoprecipitation studies of immune complexes from membranes of beta-thalassemic erythrocytes. Blood. 1992; 79:3007-13.

Mohanty JG, Nagababu E,Rifkind JM. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front Physiol. 2014; 5:84.

Zahedpanah M, Azarkeivan A, Aghaieepour M, Nikogoftar M, Ahmadinegad M, Hajibeigi B, et al. Erythrocytic phosphatidylserine exposure and hemostatic alterations in beta-thalassemia intermediate patients. Hematology. 2014; 19:472-6.

Rivella S. The role of ineffective erythropoiesis in non-transfusion-dependent thalassemia. Blood Rev. 2012; 26 Suppl 1:S12-5.

Ribeil JA, Arlet JB, Dussiot M, Moura IC, Courtois G,Hermine O. Ineffective erythropoiesis in beta -thalassemia. ScientificWorldJournal. 2013; 2013:394295.

Longo F, Piolatto A, Ferrero GB,Piga A. Ineffective Erythropoiesis in beta-Thalassaemia: Key Steps and Therapeutic Options by Drugs. Int J Mol Sci. 2021; 22.

Taher AT,Cappellini MD. How I manage medical complications of beta-thalassemia in adults. Blood. 2018; 132:1781-91.

Camaschella C, Nai A,Silvestri L. Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica. 2020; 105:260-72.

Rund D,Rachmilewitz E. Beta-thalassemia. N Engl J Med. 2005; 353:1135-46.

Pavlović S. Novel Therapy Approaches in β-Thalassemia Syndromes - A Role of Genetic Modifiers. sine loco: IntechOpen; 2015.

Jaing TH, Chang TY, Chen SH, Lin CW, Wen YC,Chiu CC. Molecular genetics of beta-thalassemia: A narrative review. Medicine (Baltimore). 2021; 100:e27522.

Razak SAA, Murad NAA, Masra F, Chong DLS, Abdullah N, Jalil N, et al. Genetic Modifiers of Fetal Haemoglobin (HbF) and Phenotypic Severity in beta-Thalassemia Patients. Curr Mol Med. 2018; 18:295-305.

Thein SL. Genetic insights into the clinical diversity of beta thalassaemia. Br J Haematol. 2004; 124:264-74.

Sobota A, Yamashita R, Xu Y, Trachtenberg F, Kohlbry P, Kleinert DA, et al. Quality of life in thalassemia: a comparison of SF-36 results from the thalassemia longitudinal cohort to reported literature and the US norms. Am J Hematol. 2011; 86:92-5.

Weidlich D, Kefalas P,Guest JF. Healthcare costs and outcomes of managing beta-thalassemia major over 50 years in the United Kingdom. Transfusion. 2016; 56:1038-45.

Krishnamurti L, Bunn HF, Williams AM,Tolar J. Hematopoietic cell transplantation for hemoglobinopathies. Curr Probl Pediatr Adolesc Health Care. 2008; 38:6-18.

Sharma A, Jagannath VA,Puri L. Hematopoietic stem cell transplantation for people with beta-thalassaemia. Cochrane Database Syst Rev. 2021; 4:CD008708.

Baronciani D, Angelucci E, Potschger U, Gaziev J, Yesilipek A, Zecca M, et al. Hemopoietic stem cell transplantation in thalassemia: a report from the European Society for Blood and Bone Marrow Transplantation Hemoglobinopathy Registry, 2000-2010. Bone Marrow Transplant. 2016; 51:536-41.

Angelucci E, Matthes-Martin S, Baronciani D, Bernaudin F, Bonanomi S, Cappellini MD, et al. Hematopoietic stem cell transplantation in thalassemia major and sickle cell disease: indications and management recommendations from an international expert panel. Haematologica. 2014; 99:811-20.

Hurley CK, Maiers M, Marsh SG,Oudshoorn M. Overview of registries, HLA typing and diversity, and search algorithms. Tissue Antigens. 2007; 69 Suppl 1:3-5.

Gaziev D, Galimberti M, Lucarelli G, Polchi P, Giardini C, Angelucci E, et al. Bone marrow transplantation from alternative donors for thalassemia: HLA-phenotypically identical relative and HLA-nonidentical sibling or parent transplants. Bone Marrow Transplant. 2000; 25:815-21.

La Nasa G, Caocci G, Argiolu F, Giardini C, Locatelli F, Vacca A, et al. Unrelated donor stem cell transplantation in adult patients with thalassemia. Bone Marrow Transplant. 2005; 36:971-5.

Angelucci E,Baronciani D. Allogeneic stem cell transplantation for thalassemia major. Haematologica. 2008; 93:1780-4.

Fleischhauer K, Locatelli F, Zecca M, Orofino MG, Giardini C, De Stefano P, et al. Graft rejection after unrelated donor hematopoietic stem cell transplantation for thalassemia is associated with nonpermissive HLA-DPB1 disparity in host-versus-graft direction. Blood. 2006; 107:2984-92.

Anasetti C. Use of alternative donors for allogeneic stem cell transplantation. Hematology Am Soc Hematol Educ Program. 2015; 2015:220-4.

Sodani P, Isgro A, Gaziev J, Paciaroni K, Marziali M, Simone MD, et al. T cell-depleted hla-haploidentical stem cell transplantation in thalassemia young patients. Pediatr Rep. 2011; 3 Suppl 2:e13.

Anurathapan U, Hongeng S, Pakakasama S, Sirachainan N, Songdej D, Chuansumrit A, et al. Hematopoietic stem cell transplantation for homozygous beta-thalassemia and beta-thalassemia/hemoglobin E patients from haploidentical donors. Bone Marrow Transplant. 2016; 51:813-8.

Anurathapan U, Hongeng S, Pakakasama S, Songdej D, Sirachainan N, Pongphitcha P, et al. Hematopoietic Stem Cell Transplantation for Severe Thalassemia Patients from Haploidentical Donors Using a Novel Conditioning Regimen. Biol Blood Marrow Transplant. 2020; 26:1106-12.

Kharya G, Bakane AN,Rauthan AM. Pretransplant myeloid and immune suppression, reduced toxicity conditioning with posttransplant cyclophosphamide: Initial outcomes of novel approach for matched unrelated donor hematopoietic stem cell transplant for hemoglobinopathies. Pediatr Blood Cancer. 2021; 68:e28909.

Li C, Wu X, Feng X, He Y, Liu H, Pei F, et al. A novel conditioning regimen improves outcomes in beta-thalassemia major patients using unrelated donor peripheral blood stem cell transplantation. Blood. 2012; 120:3875-81.

Porter J. Beyond transfusion therapy: new therapies in thalassemia including drugs, alternate donor transplant, and gene therapy. Hematology Am Soc Hematol Educ Program. 2018; 2018:361-70.

Gaziev D, Polchi P, Galimberti M, Angelucci E, Giardini C, Baronciani D, et al. Graft-versus-host disease after bone marrow transplantation for thalassemia: an analysis of incidence and risk factors. Transplantation. 1997; 63:854-60.

Cao A, Moi P,Galanello R. Recent advances in beta-thalassemias. Pediatr Rep. 2011; 3:e17.

Srivastava A,Shaji RV. Cure for thalassemia major - from allogeneic hematopoietic stem cell transplantation to gene therapy. Haematologica. 2017; 102:214-23.

Corbacioglu S, Frangoul H, Locatelli F, Hobbs W,Walters M. Defining curative endpoints for transfusion-dependent beta-thalassemia in the era of gene therapy and gene editing. Am J Hematol. 2024; 99:422-29.

Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, et al. Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature. 2010; 467:318-22.

Thompson AA, Walters MC, Kwiatkowski J, Rasko JEJ, Ribeil JA, Hongeng S, et al. Gene Therapy in Patients with Transfusion-Dependent beta-Thalassemia. N Engl J Med. 2018; 378:1479-93.

Locatelli F, Thompson AA, Kwiatkowski JL, Porter JB, Thrasher AJ, Hongeng S, et al. Betibeglogene Autotemcel Gene Therapy for Non-beta(0)/beta(0) Genotype beta-Thalassemia. N Engl J Med. 2022; 386:415-27.

Marktel S, Scaramuzza S, Cicalese MP, Giglio F, Galimberti S, Lidonnici MR, et al. Intrabone hematopoietic stem cell gene therapy for adult and pediatric patients affected by transfusion-dependent ss-thalassemia. Nat Med. 2019; 25:234-41.

Christakopoulos GE, Telange R, Yen J,Weiss MJ. Gene Therapy and Gene Editing for beta-Thalassemia. Hematol Oncol Clin North Am. 2023; 37:433-47.

Kwiatkowski JL, Walters MC, Hongeng S, Yannaki E, Kulozik AE, Kunz JB, et al. Betibeglogene autotemcel gene therapy in patients with transfusion-dependent, severe genotype beta-thalassaemia (HGB-212): a non-randomised, multicentre, single-arm, open-label, single-dose, phase 3 trial. Lancet. 2024; 404:2175-86.

Rubin R. New Gene Therapy for beta-Thalassemia. JAMA. 2022; 328:1030.

Doudna JA. The promise and challenge of therapeutic genome editing. Nature. 2020; 578:229-36.

Canver MC,Orkin SH. Customizing the genome as therapy for the beta-hemoglobinopathies. Blood. 2016; 127:2536-45.

Adelvand P, Hamid M,Sardari S. The intrinsic genetic and epigenetic regulator factors as therapeutic targets, and the effect on fetal globin gene expression. Expert Rev Hematol. 2018; 11:71-81.

Locatelli F, Lang P, Wall D, Meisel R, Corbacioglu S, Li AM, et al. Exagamglogene Autotemcel for Transfusion-Dependent beta-Thalassemia. N Engl J Med. 2024; 390:1663-76.

Mettananda S, Fisher CA, Hay D, Badat M, Quek L, Clark K, et al. Editing an alpha-globin enhancer in primary human hematopoietic stem cells as a treatment for beta-thalassemia. Nat Commun. 2017; 8:424.

Mettananda S. Genetic and Epigenetic Therapies for beta-Thalassaemia by Altering the Expression of alpha-Globin Gene. Front Genome Ed. 2021; 3:752278.

Hanna E, Remuzat C, Auquier P,Toumi M. Gene therapies development: slow progress and promising prospect. J Mark Access Health Policy. 2017; 5:1265293.

Motta I, Ghiaccio V, Cosentino A,Breda L. Curing Hemoglobinopathies: Challenges and Advances of Conventional and New Gene Therapy Approaches. Mediterr J Hematol Infect Dis. 2019; 11:e2019067.

Motta I, Bou-Fakhredin R, Taher AT,Cappellini MD. Beta Thalassemia: New Therapeutic Options Beyond Transfusion and Iron Chelation. Drugs. 2020; 80:1053-63.

Maguer-Satta V, Bartholin L, Jeanpierre S, Ffrench M, Martel S, Magaud JP, et al. Regulation of human erythropoiesis by activin A, BMP2, and BMP4, members of the TGFbeta family. Exp Cell Res. 2003; 282:110-20.

Blank U,Karlsson S. The role of Smad signaling in hematopoiesis and translational hematology. Leukemia. 2011; 25:1379-88.

Suragani RN, Cadena SM, Cawley SM, Sako D, Mitchell D, Li R, et al. Transforming growth factor-beta superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis. Nat Med. 2014; 20:408-14.

Suragani RN, Cawley SM, Li R, Wallner S, Alexander MJ, Mulivor AW, et al. Modified activin receptor IIB ligand trap mitigates ineffective erythropoiesis and disease complications in murine beta-thalassemia. Blood. 2014; 123:3864-72.

Piga A, Perrotta S, Gamberini MR, Voskaridou E, Melpignano A, Filosa A, et al. Luspatercept improves hemoglobin levels and blood transfusion requirements in a study of patients with beta-thalassemia. Blood. 2019; 133:1279-89.

Cappellini MD, Viprakasit V, Taher AT, Georgiev P, Kuo KHM, Coates T, et al. A Phase 3 Trial of Luspatercept in Patients with Transfusion-Dependent beta-Thalassemia. N Engl J Med. 2020; 382:1219-31.

Cappellini MD,Taher AT. The use of luspatercept for thalassemia in adults. Blood Adv. 2021; 5:326-33.

Taher AT, Cappellini MD, Kattamis A, Voskaridou E, Perrotta S, Piga AG, et al. Luspatercept for the treatment of anaemia in non-transfusion-dependent beta-thalassaemia (BEYOND): a phase 2, randomised, double-blind, multicentre, placebo-controlled trial. Lancet Haematol. 2022; 9:e733-e44.

Musallam KM, Sheth S, Cappellini MD, Kattamis A, Kuo KHM,Taher AT. Luspatercept for transfusion-dependent beta-thalassemia: time to get real. Ther Adv Hematol. 2023; 14:20406207231195594.

Libani IV, Guy EC, Melchiori L, Schiro R, Ramos P, Breda L, et al. Decreased differentiation of erythroid cells exacerbates ineffective erythropoiesis in beta-thalassemia. Blood. 2008; 112:875-85.

Casu C, Presti VL, Oikonomidou PR, Melchiori L, Abdulmalik O, Ramos P, et al. Short-term administration of JAK2 inhibitors reduces splenomegaly in mouse models of beta-thalassemia intermedia and major. Haematologica. 2018; 103:e46-e49.

Taher AT, Karakas Z, Cassinerio E, Siritanaratkul N, Kattamis A, Maggio A, et al. Efficacy and safety of ruxolitinib in regularly transfused patients with thalassemia: results from a phase 2a study. Blood. 2018; 131:263-65.

Adly AA,Ismail EA. Management of Children With beta-Thalassemia Intermedia: Overview, Recent Advances, and Treatment Challenges. J Pediatr Hematol Oncol. 2018; 40:253-68.

Aizawa S, Harada T, Kanbe E, Tsuboi I, Aisaki K, Fujii H, et al. Ineffective erythropoiesis in mutant mice with deficient pyruvate kinase activity. Exp Hematol. 2005; 33:1292-8.

Kuo KHM. Pyruvate kinase activators: targeting red cell metabolism in thalassemia. Hematology Am Soc Hematol Educ Program. 2023; 2023:114-20.

Matte A, Federti E,De Franceschi L. Erythrocyte pyruvate kinase activation in red cell disorders. Curr Opin Hematol. 2023; 30:93-98.

Kuo KHM, Layton DM, Lal A, Al-Samkari H, Bhatia J, Kosinski PA, et al. Safety and efficacy of mitapivat, an oral pyruvate kinase activator, in adults with non-transfusion dependent alpha-thalassaemia or beta-thalassaemia: an open-label, multicentre, phase 2 study. Lancet. 2022; 400:493-501.

Ting YL, Naccarato S, Qualtieri A, Chidichimo G,Brancati C. In vivo metabolic studies of glucose, ATP and 2,3-DPG in beta-thalassaemia intermedia, heterozygous beta-thalassaemic and normal erythrocytes: 13C and 31P MRS studies. Br J Haematol. 1994; 88:547-54.

Matte A, Federti E, Kung C, Kosinski PA, Narayanaswamy R, Russo R, et al. The pyruvate kinase activator mitapivat reduces hemolysis and improves anemia in a beta-thalassemia mouse model. J Clin Invest. 2021; 131.

Musallam KM, Taher AT, Cappellini MD, Hermine O, Kuo KHM, Sheth S, et al. Untreated Anemia in Nontransfusion-dependent beta-thalassemia: Time to Sound the Alarm. Hemasphere. 2022; 6:e806.

Musallam KM, Taher AT,Cappellini MD. Right in time: Mitapivat for the treatment of anemia in alpha- and beta-thalassemia. Cell Rep Med. 2022; 3:100790.

Koralkova P, van Solinge WW,van Wijk R. Rare hereditary red blood cell enzymopathies associated with hemolytic anemia - pathophysiology, clinical aspects, and laboratory diagnosis. Int J Lab Hematol. 2014; 36:388-97.

Schroeder P, Fulzele K, Forsyth S, Ribadeneira MD, Guichard S, Wilker E, et al. Etavopivat, a Pyruvate Kinase Activator in Red Blood Cells, for the Treatment of Sickle Cell Disease. J Pharmacol Exp Ther. 2022; 380:210-19.

Saraf SL, Hagar R, Idowu M, Osunkwo I, Cruz K, Kuypers FA, et al. Multicenter, phase 1 study of etavopivat (FT-4202) treatment for up to 12 weeks in patients with sickle cell disease. Blood Adv. 2024; 8:4459-75.

Zohaib M, Ansari SH, Shamsi TS, Zubarev RA,Zarina S. Pharmacoproteomics Profiling of Plasma From beta-Thalassemia Patients in Response to Hydroxyurea Treatment. J Clin Pharmacol. 2019; 59:98-106.

Uda M, Galanello R, Sanna S, Lettre G, Sankaran VG, Chen W, et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc Natl Acad Sci U S A. 2008; 105:1620-5.

Musallam KM, Taher AT, Cappellini MD,Sankaran VG. Clinical experience with fetal hemoglobin induction therapy in patients with beta-thalassemia. Blood. 2013; 121:2199-212; quiz 372.

Yasara N, Premawardhena A,Mettananda S. A comprehensive review of hydroxyurea for beta-haemoglobinopathies: the role revisited during COVID-19 pandemic. Orphanet J Rare Dis. 2021; 16:114.

Meo A, Cassinerio E, Castelli R, Bignamini D, Perego L,Cappellini MD. Effect of hydroxyurea on extramedullary haematopoiesis in thalassaemia intermedia: case reports and literature review. Int J Lab Hematol. 2008; 30:425-31.

Yasara N, Wickramarathne N, Mettananda C, Silva I, Hameed N, Attanayaka K, et al. A randomised double-blind placebo-controlled clinical trial of oral hydroxyurea for transfusion-dependent beta-thalassaemia. Sci Rep. 2022; 12:2752.

Bashir S, Mahmood S, Mohsin S, Tabassum I, Ghafoor M,Sajjad O. Modulatory effect of single nucleotide polymorphism in Xmn1, BCL11A and HBS1L-MYB loci on foetal haemoglobin levels in beta-thalassemia major and Intermedia patients. J Pak Med Assoc. 2021; 71:1394-98.

Aguilar-Lopez LB, Delgado-Lamas JL, Rubio-Jurado B, Perea FJ,Ibarra B. Thalidomide therapy in a patient with thalassemia major. Blood Cells Mol Dis. 2008; 41:136-7.

Dulmovits BM, Appiah-Kubi AO, Papoin J, Hale J, He M, Al-Abed Y, et al. Pomalidomide reverses gamma-globin silencing through the transcriptional reprogramming of adult hematopoietic progenitors. Blood. 2016; 127:1481-92.

Masera N, Tavecchia L, Capra M, Cazzaniga G, Vimercati C, Pozzi L, et al. Optimal response to thalidomide in a patient with thalassaemia major resistant to conventional therapy. Blood Transfus. 2010; 8:63-5.

Chen J, Zhu W, Cai N, Bu S, Li J,Huang L. Thalidomide induces haematologic responses in patients with beta-thalassaemia. Eur J Haematol. 2017; 99:437-41.

Chen JM, Zhu WJ, Liu J, Wang GZ, Chen XQ, Tan Y, et al. Safety and efficacy of thalidomide in patients with transfusion-dependent beta-thalassemia: a randomized clinical trial. Signal Transduct Target Ther. 2021; 6:405.

Bhurani D, Kapoor J, Yadav N, Khushoo V, Agrawal N, Ahmed R, et al. Experience with combination of hydroxyurea and low-dose thalidomide in transfusion-dependent beta thalassemia patients. Ann Hematol. 2021; 100:1417-27.

Lu Y, Wei Z, Yang G, Lai Y,Liu R. Investigating the Efficacy and Safety of Thalidomide for Treating Patients With ss-Thalassemia: A Meta-Analysis. Front Pharmacol. 2021; 12:814302.

Yang K, Wu Y, Ma Y, Xiao J, Zhou Y,Yin X. The association of HBG2, BCL11A, and HBS1L-MYB polymorphisms to thalidomide response in Chinese beta-thalassemia patients. Blood Cells Mol Dis. 2020; 84:102442.

Palumbo A,Palladino C. Venous and arterial thrombotic risks with thalidomide: evidence and practical guidance. Ther Adv Drug Saf. 2012; 3:255-66.

Fibach E, Bianchi N, Borgatti M, Zuccato C, Finotti A, Lampronti I, et al. Effects of rapamycin on accumulation of alpha-, beta- and gamma-globin mRNAs in erythroid precursor cells from beta-thalassaemia patients. Eur J Haematol. 2006; 77:437-41.

Pecoraro A, Troia A, Calzolari R, Scazzone C, Rigano P, Martorana A, et al. Efficacy of Rapamycin as Inducer of Hb F in Primary Erythroid Cultures from Sickle Cell Disease and beta-Thalassemia Patients. Hemoglobin. 2015; 39:225-9.

Lechauve C, Keith J, Khandros E, Fowler S, Mayberry K, Freiwan A, et al. The autophagy-activating kinase ULK1 mediates clearance of free alpha-globin in beta-thalassemia. Sci Transl Med. 2019; 11.

Zuccato C, Cosenza LC, Zurlo M, Gasparello J, Papi C, D'Aversa E, et al. Expression of gamma-globin genes in beta-thalassemia patients treated with sirolimus: results from a pilot clinical trial (Sirthalaclin). Ther Adv Hematol. 2022; 13:20406207221100648.

Perrine SP, Ginder GD, Faller DV, Dover GH, Ikuta T, Witkowska HE, et al. A short-term trial of butyrate to stimulate fetal-globin-gene expression in the beta-globin disorders. N Engl J Med. 1993; 328:81-6.

Testa U. Fetal hemoglobin chemical inducers for treatment of hemoglobinopathies. Ann Hematol. 2009; 88:505-28.

Lohani N, Bhargava N, Munshi A,Ramalingam S. Pharmacological and molecular approaches for the treatment of beta-hemoglobin disorders. J Cell Physiol. 2018; 233:4563-77.

Fakhr-Eldeen A, Toraih EA,Fawzy MS. Long non-coding RNAs MALAT1, MIAT and ANRIL gene expression profiles in beta-thalassemia patients: a cross-sectional analysis. Hematology. 2019; 24:308-17.

Lulli V, Romania P, Morsilli O, Cianciulli P, Gabbianelli M, Testa U, et al. MicroRNA-486-3p regulates gamma-globin expression in human erythroid cells by directly modulating BCL11A. PLoS One. 2013; 8:e60436.

Gasparello J, Fabbri E, Bianchi N, Breveglieri G, Zuccato C, Borgatti M, et al. BCL11A mRNA Targeting by miR-210: A Possible Network Regulating gamma-Globin Gene Expression. Int J Mol Sci. 2017; 18.

Gholampour MA, Asadi M, Naderi M, Azarkeivan A, Soleimani M,Atashi A. miR-30a regulates gamma-globin expression in erythoid precursors of intermedia thalassemia through targeting BCL11A. Mol Biol Rep. 2020; 47:3909-18.

Li H, Lin R, Li H, Ou R, Wang K, Lin J, et al. MicroRNA-92a-3p-mediated inhibition of BCL11A upregulates gamma-globin expression and inhibits oxidative stress and apoptosis in erythroid precursor cells. Hematology. 2022; 27:1152-62.

Pekarsky Y, Balatti V,Croce CM. BCL2 and miR-15/16: from gene discovery to treatment. Cell Death Differ. 2018; 25:21-26.

Li B, Zhu X, Ward CM, Starlard-Davenport A, Takezaki M, Berry A, et al. MIR-144-mediated NRF2 gene silencing inhibits fetal hemoglobin expression in sickle cell disease. Exp Hematol. 2019; 70:85-96 e5.

Hildebrand D, Eberle ME, Wolfle SM, Egler F, Sahin D, Sahr A, et al. Hsa-miR-99b/let-7e/miR-125a Cluster Regulates Pathogen Recognition Receptor-Stimulated Suppressive Antigen-Presenting Cells. Front Immunol. 2018; 9:1224.

Wang D, Si S, Wang Q, Luo G, Du Q, Liang Q, et al. MiR-27a Promotes Hemin-Induced Erythroid Differentiation of K562 Cells by Targeting CDC25B. Cell Physiol Biochem. 2018; 46:365-74.

Rujito L, Wardana T, Siswandari W, Nainggolan IM,Sasongko TH. Potential Use of MicroRNA Technology in Thalassemia Therapy. J Clin Med Res. 2024; 16:411-22.

Downloads

Published

2025-02-21

Issue

Section

บทความฟื้นวิชา (Literature review)