ผู้ป่วยโคโรน่าไวรัส-19 พบการเกิดลิ่มเลือดในหลอดเลือดดำร่วมกับลูปัส แอนตี้โคแอ็กกูแลนท์ (Lupus anticoagulant) และระดับของอดัมส์ 13 (ADAMTS-13) ต่ำ

Authors

  • Wichean Mongkonsritragoon Horizon Cancer Center, Department of Medicine, Bumrungrad International Hospital
  • Wimwipa Monkonsritragoon Department of Pediatrics, Faculty of Medicine, Chulalongkorn University

Keywords:

COVID-19, Lupus Anticoagulant, ADAMTS-13

Abstract

A Thai male, aged 58 years old presented respiratory symptoms, myalgia and acute fever. He had just
returned from an endemic area of COVID-19 infection outside Thailand. He was diagnosed with pneumonia from SARS-CoV-2 virus confirmed by nasal swab real time PCR and CT-scan of chest. He was treated with darunavia, ritonavia, favipiravir, azithromycin, chloroquine and intravenous immunoglobulin (IVIg). He also received antibiotics (levofloxacin, meropenem, vancomycin) and antifungal agent (micafungin). The pneumonia improved determined from chest X-ray and respirator setting. During treatment, the patient developed deep vein thrombosis of the right common iliac vein and was treated with unfractionated heparin infusion. The investigations of thrombophilia found positive lupus anticoagulant and low ADAMTS-13 level. The patient developed sudden cardiac arrest which EKG showed prolonged QT with acute anterolateral wall infarction. He passed away after cardiopulmonary resuscitation failed

Downloads

Download data is not yet available.

References

Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, Lu G, Qiao C, Hu Y, Yuen KY, Wang Q, Zhou H, Yan J, Qi J. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 2020; https://doi.org/10.1016/j.cell.2020.03.045. Published April 9, 2020.

Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020; doi: 10.1001/jama.2020.3786. Published March 11, 2020.

Xu H, Yan L, Qiu CM, Jiao B, Chen Y, Tan X, et al. Analysis and prediction of false negative results for sars-cov-2 detection with pharyngeal swab specimen in covid-19 patients: a retrospective study. MedRxiv 2020; doi: https://doi.org/10.1101/2020.03.26.20 043042. Published March 30, 2020.

Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, et al. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology 2020;200642.

doi: 10.1148/radiol.2020200642.

Xie Y, Cao S, Dong H, Li Q, Chen E, Zhang W, et al. Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia in patient with COVID-19. J Infect. 2020 Apr 10; S0163-4453(20)30172-9.

Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers DAMPJ, Kant KM, et al. Incidence of thrombotic complications in critical ill ICU patients with COVID-19. Thromb Res. 2020, 191:145-7.

Zhang Y, Xiao M, Zhang S, Xia P, Cao W, Jiang W, et al. Coagulopathy and antiphospholipid antibodies in patients with COVID-19. N Engl J Med. 2020 Apr 23;382(17):e38. Epub 2020 Apr 8

Harzallah I, Debliquis A, Drénou B. Lupus anticoagulant is frequent in patients with Covid-19. J Thromb Haemost. 2020 Apr 23:10.1111/jth.14867. doi: 10.1111/jth.14867. Epub ahead of print. PMID: 32324958; PMCID: PMC7264773

Stockman LJ, Bellamy R, Garner P. SARS: systematic review of treatment effects. PLoS Med. 2006 Sep;3(9):e343. doi: 10.1371/ journal.pmed.0030343. PMID: 16968120; PMCID: PMC1564166.

Mustafa S, Balkhy H, Gabere MN. Current treatment options and the role of peptides as potential therapeutic components for Middle East Respiratory Syndrome (MERS): A review. J Infect Public Health, 2017;11:9-17.

Rockman S, Lowther S, Camuglia S, Vandenberg K, Taylor S, Fabri L, et al. Intravenous immunoglobulin protects against severe pandemic influenza infection. EBioMedicine. 2017;19:119-27.

Hung IFN, To KKW, Lee CK, Lee KL, Yan WW, Chan K, et al. Hyperimmune IV Immunoglobulin treatment: a multicenter double-blind randomized controlled trial for patients with severe 2009 influenza a(h1n1) infection. Chest, 2013,144:464-73

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497-506.

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727-33.

Bowles L, Platton S, Yartey N, Dave M, Lee K, Hart DP, et al. Lupus anticoagulant and abnormal coagulation tests in patients with Covid-19. N Engl J Med. 2020 May 5:NEJMc2013656. doi: 10.1056/NEJMc2013656. Epub ahead of print. PMID: 32369280; PMCID: PMC7217555

Magro C, Mulvey JJ, Berlin D, Nuovo G, Salvatore S, Harp J, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe Covid-19 infection: a report of five cases. Transl Res. 2020 Jun;220:1-13. doi: 10.1016/j.trsl.2020.04.007. Epub 2020 Apr 15. PMID: 32299776; PMCID: PMC7158248

Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensinconverting enzyme 2. Circulation. 2005;111:2605-10

Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 2020 May 14;181(4):905-913.e7. doi: 10.1016/j.cell.2020.04.004. Epub 2020

Apr 24. PMID: 32333836; PMCID: PMC7181998. 19. Gaultier A, Cousin H, Darribere T, Alfandari D. ADAM13 disintegrin and cysteine-rish domains bind to the second heparin-binding domain of fibronectin. J Bio Chem. 2002;277:23336-44.

Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE, et al. Angiotensin- converting enzyme 2 is an essential regulator of heart function. Nature. 2002;417:822-8.

Yamamoto K, Ohishi M, Katsuya T, Ito N, Ikushima M, Kaibe M, et al. Deletion of angiotensin- converting enzyme 2 accelerates pressure overload-induced cardiac dysfunction by increasing local

angiotensin II, Hypertension. 2006;47:718-26.

Oudit GY, Kassiri Z, Jiang C, Liu PP, Poutanen SM, Penninger JM, et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Investig. 2009;39:618-25.

Oudit GY, Kassiri Z, Patel MP, Chappell M, Butany J, Backx PH, et al. Angiotensin II-mediated oxidative stress and inflammation mediate the age-dependent cardiomyopathy in ACE2 null mice, Cardiovasc. Res. 2007;75:29-39.

Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19), JAMA Cardiol. 2020 Mar 27:e201017. doi: 10.1001/jamacardio.2020.1017. Epub ahead of print. PMID: 32219356; PMCID: PMC7101506.

Downloads

Published

2020-09-28

Issue

Section

รายงานผู้ป่วย (Case report)