Multifaceted Mechanisms of Adiponectin on Cardiovascular Health: A Comprehensive Review

Authors

Keywords:

adiponectin, coronary artery disease, atherosclerosis, anti- atherogenic, anti-inflammation, metabolic regulation

Abstract

Cardiovascular diseases (CVDs) remain the leading cause of mortality globally, accounting for 19.8 million deaths annually (31.0% of all fatalities). Obesity serves as an independent risk factor for CVD development through the increased production of proinflammatory adipokines due to dysfunctional adipose tissue expansion. Adiponectin, an endocrine hormone synthesized by adipose tissue, exhibits multifaceted protective mechanisms including anti-inflammatory, anti-atherogenic, and insulin-sensitizing properties. Clinical evidence from fundamental scientific research demonstrates that hypoadiponectinemia represents an independent risk factor for cardiovascular disease development. This comprehensive review examines adiponectin’s diverse mechanisms of action on cardiovascular health, encompassing its regulatory effects on carbohydrate metabolism through AMPK activation and GLUT4 translocation, lipid metabolism via PPAR pathway modulation, and anti-inflammatory responses through suppression of TNF- a and IL-6. Additionally, we discuss adiponectin’s antiatherogenic effects mediated through endothelial nitric oxide synthase enhancement and endothelial progenitor cell functionality. A better understanding of these multifaceted mechanisms could provide insights into novel therapeutic targets and biomarker applications for cardiovascular disease management. Variations in adiponectin levels can serve as valuable indicators for monitoring the effectiveness of lifestyle and pharmacological interventions aimed at improving cardiovascular outcomes.

References

Farley A, McLafferty E, Hendry C. The cardiovascular system. Nursing Standard. 2012;27:35-9.

Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart disease and stroke statistics-2018 update. Circulation. 2018;137:e67-e492.

World Health Organization. Cardiovascular diseases (CVDs). Geneva: WHO; 2019.

Ross R. Atherosclerosis–an inflammatory disease. N Eng J Med. 1999;340:115-26.

Singh RB, Sharma JP, Rastogi V, Raghuvanshi RS, Moshiri M, Verma SP, et al. Prevalence of coronary artery disease in rural and urban populations of north India. Eur Heart J. 1997;18:1728-35.

Mensah GA, Fuster V, Murray CJL, Roth GA; Global Burden of Cardiovascular Diseases and Risks Collaborators. Global burden of cardiovascular diseases and risks, 1990-2022. J Am Coll Cardiol. 2024;83:1156-78.

Prabhakaran D, Jeemon P, Roy A. Cardiovascular diseases in India. Circulation. 2016;133:1605-20.

Mensah GA, Fuster V, Murray CJL, et al. Global burden of cardiovascular diseases and risks, 1990-2022. Institute for Health Metrics and Evaluation. 2024.

Gupta R, Mohan I, Narula J. Trends in coronary heart disease epidemiology in India. Ann Glob Health. 2016; 82:307-15.

Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease. Circulation. 2019;140:e596-e646.

Chandalia M, Cabo-Chan AV Jr, Devaraj S, Jialal I, Grundy SM, Abate N. Elevated plasma high sensitivity C- reactive protein concentrations in Asian Indians. J Clin Endocrinol Metab. 2003;88:3773-6.

Nakahara T, Dweck MR, Narula N, Pisapia D, Narula J, Strauss HW. Coronary artery calcification: from mechanism to molecular imaging. JACC Cardiovascular Imaging. 2017;10:582-93.

Shahjehan RD, Sharma S, Bhutta BS. Coronary Artery Disease. [Updated 2024 Oct 9]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan. Available from: https://www.statpearls.com/point-of-care/27718

Berg AH, Scherer PE. Adipose tissue, inflammation and cardiovascular disease. Circ Res. 2005;96:939-49.

Okamoto Y, Kihara S, Ouchi N, Nishida M, Arita Y, Kumada M, Ohashi K, et al. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation. 2002;106:2767-70.

Aprahamian TR, Sam F. Adiponectin in cardiovascular inflammation and obesity. Int J Inflam. 2011;2011:376909. PubMed PMID: 21941676.

Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem. 1995;270:26746-9.

Magkos F, Sidossis LS. Recent advances in the measurement of adiponectin isoform distribution. Curr Opin Clin Nutr Metab Care. 2007;10:571-5.

Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003; 423:762-9.

Hug C, Wang J, Ahmad NS, Bogan JS, Tsao TS, Lodish HF. T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc Natl Acad Sci U S A. 2004;101:10308-13.

Vasileva F, Font-Lladó R, Carreras-Badosa G, Cazorla-González J, López-Bermejo A, Prats-Puig A. Integrated neuromuscular training intervention applied in schools induces a higher increase in salivary high molecular weight adiponectin and a more favorable body mass index, cardiorespiratory fitness and muscle strength in children as compared to the traditional physical education classes. Front Public Health. 2024;12:1337958. PubMed PMID: 38756879

Xinmeng Liu, Yang Yang, Heng Shao, Sujuan Liu, Yanmei Niu, Li Fu. Globular adiponectin ameliorates insulin resistance in skeletal muscle by enhancing the LKB1-mediated AMPK activation via SESN2. Sports Med Health Sci. 2023;5:34-41.

Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med. 2002;8:731-7.

Ceddia RB, Somwar R, Maida A, Fang X, Bikopoulos G, Sweeney G. Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia. 2005;48:132-9.

Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1:15-25.

Liao Y, Takashima S, Maeda N, Ouchi N, Komamura K, Shimomura I, et al. Exacerbation of heart failure in adiponectin- deficient mice due to impaired regulation of AMPK and glucose metabolism. Cardiovasc Res. 2005;67:705-13.

Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med. 2001;7:947-53.

Combs TP, Berg AH, Obici S, Scherer PE, Rossetti L. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J Clin Invest. 2001; 108:1875-81.

Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001;7:941-6.

Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci U S A. 2001;98: 2005-10.

Roepstorff C, Halberg N, Hillig T, Saha AK, Ruderman NB, Wojtaszewski JF, et al. Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise. Am J Physiol Endocrinol Metab. 2005;288:E133-42.

Choi HM, Doss HM, Kim KS. Multifaceted physiological roles of adiponectin in inflammation and diseases. Int J Mol Sci. 2020; 21:1219. PubMed PMID: 32059381

Han W, Yang S, Xiao H, Wang M, Ye J, Cao L, Sun G. Role of Adiponectin in Cardiovascular Diseases Related to Glucose and Lipid Metabolism Disorders. Int J Mol Sci. 2022;23:15627. PubMed PMID: 36555264

Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin- resistant states. Spring Harb Perspect Biol. 2014;6:a009191. PubMed PMID: 24384568

Angelidi AM, Filippaios A, Mantzoros CS. Severe insulin resistance syndromes. J Clin Invest. 2021;131(4): e142245. PubMed PMID: 33586681

Liu M, Xiang R, Wilk SA, Zhang N, Sloane LB, Azarnoush K, et al. Fat-specific DsbA-L overexpression promotes adiponectin multimerization and protects mice from diet-induced obesity and insulin resistance. Diabetes. 2012;61:2776-86.

Begum M, Choubey M, Tirumalasetty MB, Arbee S, Mohib MM, Wahiduzzaman M, Mamun MA, Uddin MB, Mohiuddin MS. Adiponectin: a promising target for the treatment of diabetes and its complications. Life (Basel). 2023;13(11):2213. PubMed PMID: 38004353.

Yamauchi T, Kamon J, Waki H, Imai Y, Shimozawa N, et al. Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J Biol Chem. 2003;278:2461-68.

Okada-Iwabu M, Yamauchi T, Iwabu M, Honma T, Hamagami K, Matsuda K, et al. A small-molecule adipor agonist for type 2 diabetes and short life in obesity. Nature. 2013;503:493-9.

Kumada M, Kihara S, Sumitsuji S, Kawamoto T, Matsumoto S, Ouchi N, et al. Association of hypoadiponectinemia with coronary artery disease in men. Arterioscler Thromb Vasc Biol. 2003;23:85-9.

Pischon T, Girman CJ, Hotamisligil GS, Rifai N, Hu FB, Rimm EB. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA. 2004;291:1730-7.

Schulze MB, Shai I, Rimm EB, Li T, Rifai N, Hu FB. Adiponectin and future coronary heart disease events among men with type 2 diabetes. Diabetes. 2005;54: 534-9.

Ouchi N, Kobayashi H, Kihara S, Kumada M, Sato K, Inoue T, et al. Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J Biol Chem. 2004;279:1304-9.

Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ. Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem. 2003; 278:45021-6.

Hattori Y, Suzuki M, Hattori S, Kasai K. Globular adiponectin upregulates nitric oxide production in vascular endothelial cells. Diabetologia. 2003;46:1543-9.

Motoshima H, Wu X, Mahadev K, Goldstein BJ. Adiponectin suppresses proliferation and superoxide generation and enhances eNOS activity in endothelial cells treated with oxidized LDL. Biochem Biophys Res Commun. 2004;315: 264-71.

Xu A, Wang Y, Lam KS, Vanhoutte PM. Vascular actions of adipokines molecular mechanisms and therapeutic implications. Adv Pharmacol. 2010; 60:229-55.

Motobayashi Y, Izawa-Ishizawa Y, Ishizawa K, Orino S, Yamaguchi K, Kawazoe K, et al. Adiponectin inhibits insulin-like growth factor-1-induced cell migration by the suppression of extracellular signal- regulated kinase 1/2 activation, but not Akt in vascular smooth muscle cells. Hyperten Res. 2009;32:188-93.

Tsubakio-Yamamoto K, Matsuura F, Koseki M, Oku H, Sandoval JC, Inagaki M, et al. Adiponectin prevents atherosclerosis by increasing cholesterol efflux from macrophages. Biochem Biophys Res Commun. 2008;375:390-4.

Ridker PM. High-sensitivity C-reactive protein and cardiovascular risk: rationale for screening and primary prevention. Am J Cardiol. 2003;92:17K-22K. PubMed PMID: 12948872

Laaksonen DE, Niskanen L, Nyyssönen K, Punnonen K, Tuomainen TP, Valkonen VP, et al. C-reactive protein and the development of the metabolic syndrome and diabetes in middle-aged men. Diabetologia. 2004;47:1403-10.

Ouchi N, Kihara S, Funahashi T, Nakamura T, Nishida M, Kumada M, et al. Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation. 2003;107:671-4.

Blake GJ, Ridker PM. Novel clinical markers of vascular wall inflammation. Circ Res. 2001;89:763-71.

Engeli S, Feldpausch M, Gorzelniak K, Hartwig F, Heintze U, Janke J, et al. Association between adiponectin and mediators of inflammation in obese women. Diabetes. 2003;52:942-7.

Krakoff J, Funahashi T, Stehouwer CD, Schalkwijk CG, Tanaka S, Matsuzawa Y, et al. Inflammatory markers, adiponectin, and risk of type 2 diabetes in the Pima Indian. Diabetes Care. 2003;26:1745-51.

Salvado MD, Alfranca A, Escolano A, Haeggström JZ, Redondo JM. COX-2 limits prostanoid production in activated HUVECs and is a source of PGH2 for transcellular metabolism to PGE2 by tumor cells. Arterioscler Thromb Vasc Biol. 2009;29:1131-7.

Ikeda Y, Ohashi K, Shibata R, Pimentel DR, Kihara S, Ouchi N, et al. Cyclooxygenase-2 induction by adiponectin is regulated by a sphingosine kinase-1 dependent mechanism in cardiac myocytes. FEBS Lett. 2008;582:1147-50.

Dubuisson N, Versele R, Davis-López de Carrizosa MA, Selvais CM, Noel L, Planchon C, et al. The adiponectin receptor agonist, ALY688: A promising therapeutic for fibrosis in dystrophic muscle. Cells. 2023;12:2101. PubMed PMID: 37626911

Liu HH, Li S, Li JJ. Tafolecimab, a third monoclonal antibody for PCSK9 as novel lipid-lowering drug. Drugs. 2025;85:627-42.

Tu WJ, Qiu HC, Liu YK, Liu Q, Zeng X, Zhao J. Elevated levels of adiponectin associated with major adverse cardiovascular and cerebrovascular events and mortality risk in ischemic stroke. Cardiovasc Diabetol. 2020;19:125. PubMed PMID: 32771014

Bai W, Huang J, Zhu M, Liu X, Tao J. Association between elevated adiponectin level and adverse outcomes in patients with heart failure: a systematic review and meta-analysis. Braz J Med Biol Res. 2019;52(7):e8416. PubMed PMID: 31314851

Downloads

Published

2025-09-02

How to Cite

1.
Patappu L, K Dhas P, K.P M, D P, Jaishankar T, T S. Multifaceted Mechanisms of Adiponectin on Cardiovascular Health: A Comprehensive Review. BSCM [internet]. 2025 Sep. 2 [cited 2026 Jan. 26];64(4):326-35. available from: https://he01.tci-thaijo.org/index.php/CMMJ-MedCMJ/article/view/278341

Issue

Section

Review Article