Impact of Microglia in Neurodevelopmental Disorders: A Review
Main Article Content
บทคัดย่อ
Objective Microglia, immune cells that dwell in the brain, have essential functions in neurodevelopment and are responsible for synaptic pruning, neuronal circuit creation, and inflammatory responses. Disrupted microglial activity can contribute to conditions such as autism spectrum disorders, schizophrenia, and ADHD by impacting the health and connections of neurons through the production of pro-inflammatory cytokines. These cells, which arise during central nervous system (CNS) development and have the ability to regenerate themselves throughout an individual’s lifespan, display considerable functional variation. Microglia, which have traditionally been known for their immunological functions, also play a role in regulating neurodevelopmental processes such as programmed synaptogenesis, synaptic pruning and cell death. Recent genetic and preclinical research indicates that abnormalities in microglial activity can result in a range of neurological diseases, varying in intensity from moderate to severe. The critical function of microglia in the development of the CNS is determined by their interactions with neurons and other glial cells, that have an impact on the structure of synapses and on the formation of new neurons. This review aims to fill gaps in earlier research by examining the diverse nature of microglial cells and their crucial functions in the development of the nervous system. It specifically focuses on current discoveries related to the rearrangement of synapses, the regeneration of neurons, and the impact of environmental stimuli. Comprehending these interactions is essential for creating precise treatments for neurodevelopmental diseases, emphasizing the necessity for ongoing investigation into microglial processes and measures to reduce their negative impact on brain development.
Article Details

อนุญาตภายใต้เงื่อนไข Creative Commons Attribution 4.0 International License.
เอกสารอ้างอิง
Lannes N, Eppler E, Etemad S, Yotovski P, Filgueira L. Microglia at center stage: a comprehensive review about the versatile and unique residential macrophages of the central nervous system. Oncotarget. 2017;8:114393. PubMed PMID: 29371994
Yanuck S. Microglial phagocytosis of neurons: diminishing neuronal loss in traumatic, infectious, inflammatory, and autoimmune CNS disorders. Front Psychiatry. 2019;10:712. PubMed PMID: 31632307
Oosterhof N, Chang I, Karimiani E, Kuil L, Jensen D, Daza R, et al. Homozygous mutations in CSF1R cause a pediatric-onset leukoencephalopathy and can result in congenital absence of microglia. Am J Hum Genet. 2019;104:936-47.
Yu F, Wang Y, Stetler A, Leak R, Hu X, Chen J. Phagocytic microglia and macrophages in brain injury and repair. CNS Neurosci Ther. 2022;28:1279-93.
Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 2015;518:547-51.
Kawanishi S, Takata K, Itezono S, Nagayama H, Konoya S, Chisaki Y, et al. Bone-marrow-derived microglia-like cells ameliorate brain amyloid pathology and cognitive impairment in a mouse model of Alzheimer’s disease. J Alzheimers Dis. 2018;64:563-85.
Kitic M, See P, Bruttger J, Ginhoux F, Waisman A. Novel
microglia depletion systems: a genetic approach utilizing conditional diphtheria toxin receptor expression and a pharmacological model based on the blocking of macrophage colony-stimulating factor 1 receptor. In: Ginhoux F, editor. Microglia: Methods and Protocols. New York: Springer; 2019. p. 217-30.
Mordelt A, de Witte L. Microglia-mediated synaptic pruning as a key deficit in neurodevelopmental disorders: Hype or hope?. Curr Opin Neurobiol. 2023;79:102674. PubMed PMID: 36657237
Lisak R, Benjamins J, Bealmear B, Nedelkoska L, Yao B, Land S, et al. Differential effects of Th1, monocyte/macrophage and Th2 cytokine mixtures on early gene expression for glial and neural-related molecules in central nervous system mixed glial cell cultures: neurotrophins, growth factors and structural proteins. J Neuroinflammation. 2007;4:30. PubMed PMID: 18088439
Gray S, Kinghorn K, Woodling N. Shifting equilibriums in Alzheimer’s disease: The complex roles of microglia in neuroinflammation, neuronal survival and neurogenesis. Neural Regen Res. 2020;15:1208-19.
Elmore M, Najafi A, Koike M, Dagher N, Spangenberg E, Rice RA, et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron. 2014;82:380-97.
Squarzoni P, Oller G, Hoeffel G, Pont-Lezica L, Rostaing P, Low D, et al. Microglia modulate wiring of the embryonic forebrain. Cell Rep. 2014;8:1271-9.
Delatour L, Yeh P, Yeh H. Prenatal exposure to ethanol alters synaptic activity in layer V/VI pyramidal neurons of the somatosensory cortex. Cereb Cortex. 2020;30:1735-51.
Liu YJ, Spangenberg EE, Tang B, Holmes TC, Green KN, Xu X. Microglia elimination increases neural circuit connectivity and activity in adult mouse cortex. J Neurosci. 2021;41:1274-87.
Wang Y, Fu W, Cheung K, Hung KW, Chen C, Geng H, et al. Astrocyte-secreted IL-33 mediates homeostatic synaptic plasticity in the adult hippocampus. Proc Natl Acad Sci U S A. 2021;118(1):e2020810118. PubMed PMID: 33443211
Badimon A, Strasburger H, Ayata P, Chen X, Nair A, Ikegami A, et al. Negative feedback control of neuronal activity by microglia. Nature. 2020;586:417-23.
Paolicelli R, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333:1456-8.
Vainchtein I, Chin G, Cho FS, Kelley KW, Miller JG, Chien EC, et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science. 2018;359:1269-73.
Eltokhi A, Santuy A, Merchan-Perez A, Sprengel R. Glutamatergic dysfunction and synaptic ultrastructural alterations in schizophrenia and autism spectrum disorder: Evidence from human and rodent studies. Int J Mol Sci. 2020;22:59. PubMed PMID: 33374598
Aarum J, Sandberg K, Haeberlein S, Persson M. Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci U S A. 2003;100:15983-8.
Fu R, Shen Q, Xu P, Luo J, Tang Y. Phagocytosis of microglia in the central nervous system diseases. Mol Neurobiol. 2014;49:1422-34.
Baudry M, Yao Y, Simmons D, Liu J, Bi X. Postnatal development of inflammation in a murine model of Niemann-Pick type C disease: Immunohistochemical observations of microglia and astroglia. Exp Neurol. 2003;184:887-903.
Cserep C, Schwarcz AD, Posfai B, Laszlo Z, Kellermayer A, Kornyei Z, et al. Microglial control of neuronal development via somatic purinergic junctions. Cell Rep. 2022;40:111369. PubMed PMID: 36130488
Villa A, Della Torre S, Maggi A. Sexual differentiation of microglia. Front Neuroendocrinol. 2019;52:156-64.
Hui C, St-Pierre A, El Hajj H, Remy Y, Hébert S, Luheshi G, et al. Prenatal immune challenge in mice leads to partly sex-dependent behavioral, microglial, and molecular abnormalities associated with schizophrenia. Front Mol Neurosci. 2018;11:13. PubMed PMID: 29472840
Madore C, Leyrolle Q, Morel L, Rossitto M, Greenhalgh A, Delpech J, et al. Essential omega-3 fatty acids tune microglial phagocytosis of synaptic elements in the mouse developing brain. Nat Commun. 2020;11:6133. PubMed PMID: 33257673
Nakagawa Y, Chiba K. Involvement of neuroinflammation during brain development in social cognitive deficits in autism spectrum disorder and schizophrenia. J Pharmacol Exp Ther. 2016;358:504-15.
Han V, Patel S, Jones H, Dale R. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat Rev Neurol. 2021;17:564-79.
Santos S, Ferreira H, Martins J, Gonçalves J, Castelo-
Branco M. Male sex bias in early and late onset neurodevelopmental disorders: Shared aspects and differences in autism spectrum disorder, attention deficit/hyperactivity disorder, and schizophrenia. Neurosci Biobehav Rev. 2022;135:104577. PubMed PMID: 35167846
Block C, Eroglu O, Mague S, Smith CJ, Ceasrine A, Sriworarat C, et al. Prenatal environmental stressors impair postnatal microglia function and adult behavior in males. Cell Rep. 2022;40 :111161. PubMed PMID: 35926455
Ohgidani M, Kato T, Setoyama D, Sagata N, Hashimoto R, Shigenobu K, et al. Direct induction of ramified microglia-like cells from human monocytes: dynamic microglial dysfunction in Nasu-Hakola disease. Sci Rep. 2014;4:4957. PubMed PMID: 24825127
Katoh Y, Iriyama T, Yano E, Sayama S, Seyama T, Kotajima-Murakami H, et al. Increased production of inflammatory cytokines and activation of microglia in the fetal brain of preeclamptic mice induced by angiotensin II. J Reprod Immunol. 2022;154:103752. PubMed PMID: 36202022
Laye S, Nadjar A, Joffre C, Bazinet R. Anti-inflammatory effects of omega-3 fatty acids in the brain: physiological mechanisms and relevance to pharmacology. Pharmacol Rev. 2018;70:12-38.
Greter M, Merad M. Regulation of microglia development and homeostasis. Glia. 2013;61:121-7.
Matcovitch-Natan O, Winter D, Giladi A, Vargas Aguilar S, Spinrad A, Sarrazin S, et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science. 2016;353:aad8670. PubMed PMID: 27338705
Martínez-Cerdeño V, Noctor S. Neural progenitor cell terminology. Front Neuroanat. 2018;12:104. PubMed PMID: 30574073
Ritter MR, Banin E, Moreno S, Aguilar E, Dorrell M, Friedlander M. Myeloid progenitors differentiate into microglia and promote vascular repair in a model of ischemic retinopathy. J Clin Invest. 2006;116:3266-76.
Checchin D, Sennlaub F, Levavasseur E, Leduc M, Chemtob S. Potential role of microglia in retinal blood vessel formation. Invest Ophthalmol Vis Sci. 2006;47: 3595-602.
Hattori Y, Naito Y, Tsugawa Y, Nonaka S, Wake H, Nagasawa T, et al. Transient microglial absence assists postmigratory cortical neurons in proper differentiation. Nat Commun. 2020;11:1631. PubMed PMID: 32242005
Pardo C, Buckley A, Thurm A, Lee L, Azhagiri A, Neville D, Swedo S. A pilot open-label trial of minocycline in patients with autism and regressive features. J. Neurodev. Disord. 2013;5:9. PubMed PMID: 23566357