Feasibility of Large Multi-Leaf Collimator in Stereotactic Radiosurgery/Stereotactic Radiotherapy: A Single Center Experience

Main Article Content

Akanit Chaiyapong
Anirut Watcharawipha
Wannapha Nobnop
Anupong Kongsa
Bongkot Jia-Mahasap

บทคัดย่อ

Objective  This study investigated the feasibility of using a large multi- leaf collimator (MLC) in a C-arm based linear accelerator for stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT).


Methods  Patient Specific Quality Assurance was conducted on 69 patients treated with a single lesion SRS/SRT measuring dose distribution using patient-specific plans with SRS MapCHECK®.  Statistics were used to analyze the significance of correlation among dosimetric parameters, included Conformity Index (CI), Gradient Index (GI), plan complexity, and Gamma passing rate (GPR) in an absolute dose (AD) and relative dose (RD). confidence limit (CL) was also calculated to evaluate the performance of a large multileaf collimator (MLC) in SRS/SRT.


Results Planning target volumes (PTVs) ranged between 0.34 cm3 and 30.42 cm3. The study found a value of CIICRU, CIPaddick, and GI of 1.29 ± 0.17, 0.77±0.10 and 5.24±2.18 (mean±SD), respectively, significant correlations were found between PTV sizes and dosimetric parameters. Values of GPR2%/2mm were 92.42±3.74 (AD), 96.38±3.24 (RD), whereas GPR2%/1mm were 82.03±6.69 (AD), 89.64±7.26 (RD). No significant correlation was found between plan complexity and GPR. CL values were 85.09% (AD), 90.03% (RD) for GPR2%/2mm and 68.92% (AD), 75.41% (RD) for GPR2%/1mm. 


Conclusions This study assessed the feasibility of using a large MLC for a single lesion SRS/SRT across various PTV sizes. The values of CI and GI decreased for a small lesion. While the large MLC performed adequately across different PTV sizes, the CL value of RD GPR at 2%/1 mm fell below 90%. This indicates that the contribution of PTV margin might be consi-dered for a large MLC in SRS/SRT

Article Details

รูปแบบการอ้างอิง
1.
Chaiyapong A, Watcharawipha A, Nobnop W, Kongsa A, Jia-Mahasap B. Feasibility of Large Multi-Leaf Collimator in Stereotactic Radiosurgery/Stereotactic Radiotherapy: A Single Center Experience. BSCM [อินเทอร์เน็ต]. 16 ธันวาคม 2024 [อ้างถึง 27 ธันวาคม 2025];64(1):33-4. available at: https://he01.tci-thaijo.org/index.php/CMMJ-MedCMJ/article/view/271545
ประเภทบทความ
Original Article

เอกสารอ้างอิง

Lutz W, Winston KR, Maleki N. A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys. 1988;14:373-81.

Podgorsak EB, editor. Review of radiation oncology physics: a handbook for teachers and students. Vienna, Austria: IAE Agency; 2003.

Schell MC, Bova F, Larson D, Leavitt D, Lutz W, Podgorsak E, Wu A. AAPM report no. 54: Stereotactic radiosurgery. NY: Woodbury; 1995.

Leksell L. Stereotactic radiosurgery. J Neurol Neurosurg Psychiatry. 1983;46:797-803.

Colombo F, Benedetti A, Pozza F, Zanardo A, Avanzo RC, Chierego G, Marchetti C. Stereotactic radiosurgery utilizing a linear accelerator. Appl Neurophysiol. 1985;48:133-45.

Betti OO, Munari C, Rosler R. Stereotactic radiosurgery with the linear accelerator: treatment of arteriovenous malformations. Neurosurgery. 1989;24:311-21.

Holmes TW, Hudes R, Dziuba S, Kazi A, Hall M, Dawson D. Stereotactic image-guided intensity modulated radiotherapy using the HI-ART II helical tomotherapy system. Med Dosim. 2008;33:135-48.

Soisson ET, Hoban PW, Kammeyer T, Kapatoes JM, Westerly DC, Basavatia A, Tomé WA. A technique for stereotactic radiosurgery treatment planning with helical tomotherapy. Med Dosim. 2011;36:46-56.

Watcharawipha A, Chitapanarux I, Jia-Mahasap B. Dosimetric comparison of large field widths in helical tomotherapy for intracranial stereotactic radiosurgery. International Journal of Radiation Research. 2022;20:701-7.

Sarfaraz M. CyberKnife robotic arm stereotactic radiosurgery. J Am Coll Radiol. 2007;4:563-5.

Simpson JR, Drzymala RE, Rich KM. Stereotactic radiosurgery and radiotherapy. In: Perez CA, Vijayakumar S, Levitt SH, Purdy JA, editors. Technical Basis of Radiation Therapy: Practical Clinical Applications. Berlin, Heidelberg: Springer Berlin Heidelberg; 2006. p. 233-53.

Grishchuk D, Dimitriadis A, Sahgal A, De Salles A, Fariselli L, Kotecha R, et al. ISRS Technical Guidelines for Stereotactic Radiosurgery: Treatment of Small Brain Metastases (≤1 cm in Diameter). Pract Radiat Oncol. 2023;13:183-94.

Li K. Aperture effect for LINAC-based SRS in small target treatment†. J Radiosurg SBRT. 2016;4:21-9.

Yoganathan SA, Mani KR, Das KJ, Agarwal A, Kumar S. Dosimetric effect of multileaf collimator leaf width in intensity-modulated radiotherapy delivery techniques for small- and large-volume targets. J Med Phys. 2011;36:72-7.

Tanyi JA, Kato CM, Chen Y, Chen Z, Fuss M. Impact of the high-definition multileaf collimator on linear accelerator-based intracranial stereotactic radiosurgery. Br J Radiol. 2011;84:629-38.

Abisheva Z, Floyd SR, Salama JK, Kirkpatrick J, Yin FF, Moravan MJ, et al. The effect of MLC leaf width in single-isocenter multi-target radiosurgery with volumetric modulated arc therapy. J Radiosurg SBRT. 2019;6:131-8.

Yoshio K, Wakita A, Hisazumi K, Kitayama T, Tajiri N, Shiode T, et al. Feasibility of 5- mm vs 2.5-mm width multileaf collimator in noncoplanar volumetric modulated arc stereotactic radiotherapy for multiple brain metastases. Med Dosim. 2020;45:97-101.

Marrazzo L, Zani M, Pallotta S, Greto D, Scoccianti S, Talamonti C, et al. Comparison of stereotactic plans for brain tumors with two different multileaf collimating systems. J Appl Clin Med Phys. 2014;15:4100. PubMed PMID: 24423831

Jin JY, Yin FF, Ryu S, Ajlouni M, Kim JH. Dosimetric study using different leaf-width MLCs for treatment planning of dynamic conformal arcs and intensity-modulated radiosurgery. Med Phys. 2005;32:405-11.

Serna A, Puchades V, Mata F, Ramos D, Alcaraz M. Influence of multi-leaf collimator leaf width in radiosurgery via volumetric modulated arc therapy and 3D dynamic conformal arc therapy. Phys Med. 2015;31: 293-6.

International Commission on Radiation Units and Measurements. J ICRU. 2014;14:Np. PubMed PMID: 27789602

Paddick I. A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note. J Neurosurg. 2000;93(Supplement_3):219-22.

Chern S-s, Leavitt DD, Jensen RL, Shrieve DC. Is smaller better? Comparison of 3-mm and 5-mm leaf size for stereotactic radiosurgery: A dosimetric study. International Journal of Radiation Oncology Biology Physics. 2006;66(Supplement_4):S76-S81.

Chae S-M, Lee KW, Son SH. Dosimetric impact of multileaf collimator leaf width according to sophisticated grade of technique in the IMRT and VMAT planning for pituitary adenoma lesion. Oncotarget. 2016;7:78119-26.

Naing L, Winn T, Rusli B. Practical issues in calculating the sample size for prevalence studies. Archives of Orofacial Sciences. 2006;1:9-14.

Paddick I, Lippitz B. A simple dose gradient measurement tool to complement the conformity index. J Neurosurg. 2006;105(Supplement):194-201.

Chiavassa S, Bessieres I, Edouard M, Mathot M, Moignier A. Complexity metrics for IMRT and VMAT plans: a review of current literature and applications. Br J Radiol. 2019;92:20190270. PubMed PMID: 31295002

Sadowski BM, Fillmann M, Szałkowski D, Kukołowicz P. Evaluation of SRS MapCHECK with StereoPHAN phantom as a new pre-treatment system verification for SBRT plans. Polish Journal of Medical Physics and Engineering. 2022;28:84-9.

Miften M, Olch A, Mihailidis D, Moran J, Pawlicki T, Molineu A, et al. Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218. Med Phys. 2018;45:e53-e83. PubMed PMID: 29443390

Medicine AAoPi. TG-119 IMRT commissioning tests instructions for planning, measurement and analysis. Med Phys. 2009;36:5359-73.

Dhabaan A, Elder E, Schreibmann E, Crocker I, Curran WJ, Oyesiku NM, et al. Dosimetric performance of the new high-definition multileaf collimator for intracranial stereotactic radiosurgery. J Appl Clin Med Phys. 2010;11:3040. PubMed PMID: 20717077

Li T, Irmen P, Liu H, Shi W, Alonso-Basanta M, Zou W, et al. Dosimetric performance and planning/delivery efficiency of a dual-layer stacked and staggered mlc on treating multiple small targets: a planning study based on single-isocenter multi-target stereotactic radiosurgery (SRS) to brain metastases. Front Oncol. 2019;9:7. PubMed PMID: 30723702

Jalbout W, Abou Zahr J, Youssef B, Shahine B. On the feasibility of stereotactic radiosurgery with 5.0 and 10.0 mm MLC Leaves as a function of target size and shape. Front Oncol. 2019;9:741. PubMed PMID: 31440471

Watcharawipha A, Chakrabandhu S, Kongsa A, Tippanya D, Chitapanarux I. Plan quality analysis of stereotactic ablative body radiotherapy treatment planning in liver tumor. J Appl Clin Med Phys. 2023;24:e13948. PubMed PMID: 36857202

Ohtakara K, Hayashi S, Hoshi H. Dose gradient analyses in Linac-based intracranial stereotactic radiosurgery using Paddick’s gradient index: consideration of the optimal method for plan evaluation. J Radiat Res. 2011;52:592-9.

Popple RA, Brown MH, Thomas EM, Willey CD, Cardan RA, Covington EL, et al. Transition from manual to automated planning and delivery of volumetric modulated arc therapy stereotactic radiosurgery: clinical, dosimetric, and quality assurance results. Pract Radiat Oncol. 2021;11:e163-e71. PubMed PMID: 33632630

Menon SV, Paramu R, Bhasi S, Nair RK. Evaluation of plan quality metrics in stereotactic radiosurgery/radiotherapy in the treatment plans of arteriovenous malformations. J Med Phys. 2018;43:214-20.

Desai DD, Cordrey IL, Johnson EL. A measure of SRS/SRT plan quality: Quantitative limits for intermediate dose spill (R50%) in linac-based delivery. J Appl Clin Med Phys. 2022;23(5):e13570. PubMed PMID: 3523434

Li J, Zhang X, Pan Y, Zhuang H, Wang J, Yang R. Assessment of delivery quality assurance for stereotactic radiosurgery with cyberknife. Front Oncol. 2021;11:751922. PubMed PMID: 34868957

Younge KC, Kuchta JR, Mikell JK, Rosen B, Bredfeldt JS, Matuszak MM. The impact of a high definition multileaf collimator for spine SBRT. J Appl Clin Med Phys. 2017;18:97-103.

Kim JI, Chun M, Wu HG, Chie EK, Kim HJ, Kim JH, Park JM. Gamma analysis with a gamma criterion of 2%/1 mm for stereotactic ablative radiotherapy delivered with volumetric modulated arc therapy technique: a single institution experience. Oncotarget. 2017;8:76076-84.