Perspectives on OncomiR and TSmiRs in Breast Cancer and Assessment of their Regulatory Network
Keywords:
breast cancer, non-invasive, biomarkers, miRNA, serum, prognosisAbstract
Breast cancer stands as a primary cause of mortality among women, urging the exploration of novel avenues for early detection. MicroRNAs (miRNAs) emerge as promising biomarkers, acting as both oncogenes and tumor suppressors, thus offering the potential for breakthroughs in early detection. Elevated levels of oncogenic miRNAs (OncomiRs) in cancer foster cell proliferation, migration, and metastasis by suppressing tumor suppressor genes. Inhibiting OncomiRs function presents a promising treatment strategy, where synthetic anti-miRs hinder OncomiRs binding to target RNAs, effectively suppressing cancer cell growth and metastasis. Conversely, decreased expression of Tumor Suppressor miRNAs (TSmiRs) in cancer facilitates malignancy progression by failing to suppress cancer-promoting genes. Circulating microRNAs (miRNAs) have gained considerable interest as promising biomarkers for breast cancer, owing to their distinct properties and involvement in cancer progression. An essential benefit of circulating miRNAs is their presence in bodily fluids like blood, serum, plasma, and breast milk. They exhibit remarkable stability within these fluids, safeguarded against degradation through encapsulation within extracellular vesicles or binding with proteins. This stability renders them appealing candidates for non-invasive biomarker identification. This article provides an overview of miRNA’s pivotal role in breast cancer and its clinical significance
References
Hou Z, Zheng J, Zhang C. Direct ultrasensitive electrochemical detection of breast cancer biomarker-miRNA-21 employing an apt sensor based on a microgel nanoparticle composite. Sens Actuators B Chem. 2022;367:132067.
Seale K, Ruffin K, Tkaczuk K. Circulating Biomarkers in Breast Cancer. Clin Breast Cancer. 2021;22:319-331.
Xia C, Dong X, Li H, Cao M, Sun D, He S, et al. Cancer statistics in China and United States, profiles, trends, and determinants. Chin Med J (Engl). 2022;135:584-90.
Momenimovahed Z, Salehiniya H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer (Dove Med Press). 2019;11: 151-64.
Mustapha M, Ozsahin D, Ozsahin I, Uzun B. Breast cancer screening based on supervised learning and multi-criteria decision-making. Diagnostics (Basel). 2022;12:1326. PubMed PMID: 35741136.
Wang Y, Yin W, Lin Y, Yin K, Zhou L, Du Y, et al. Downregulated circulating microRNAs after surgery: potential noninvasive biomarkers for diagnosis and prognosis of early breast cancer. Cell Death Discov. 2018;4:21. PubMed PMID: 30109140.
Zou R, Loke S, Tan V, Quek S, Jagmohan P, Tang Y, et al. Development of a microRNA Panel for the Classification of Abnormal Mammograms for Breast Cancer. Cancers (Basel). 2021;13:2130. PubMed PMID: 33925125.
Jang Y, Kim Y, Kang K, Kim K, Park Y, Kim C. Multiple microRNAs as biomarkers for early breast cancer diagnosis. Mol Clin Oncol. 2021;14:31. PubMed PMID: 33414912.
Gahlawat A, Fahed L, Witte T, Schott S. Total circulating microRNA level as an independent prognostic marker for risk stratification in breast cancer. Br J Cancer. 2022; 127:156-62.
Yao Y, Liu R, Gao C, Zhang T, Qi L, Liu G, et al. Identification of prognostic biomarkers for breast cancer based on miRNA and mRNA co‐expression network. J Cell Biochem. 2019;120:15378-88. PubMed PMID: 31037764.
Wong JS, Cheah YK. Potential miRNAs for miRNA-based therapeutics in breast cancer. Noncoding RNA. 2020;6:29. PubMed PMID: 32668603
Davarinejad O, Mohammadi P, Ghavi D. Identifying miRNA signature for predicting and treatment of breast cancer using the transcriptomic data of 7,000 breast tumors. Research Square [Internet]. 2022. Available from: https://assets-eu.researchsquare.com/files/rs-1551331/v1/5f0a7b42-e175-4bc0-971c-e815f054e58b.pdf?c=1651655662
Zou R, Loke S, Tang Y, Too H, Zhou L, Lee S, et al. Development and validation of a circulating microRNA panel for the early detection of breast cancer. Br J Cancer. 2022;126:472-81.
Wu HJ, Chu PY. Recent discoveries of macromolecule- and cell-based biomarkers and therapeutic implications in breast cancer. Int J Mol Sci. 2021;22:636. PubMed PMID: 33435254.
Mansoori B, Silvestris N, Mohammadi A, Khaze V, Baghbani E, Mokhtarzadeh A, et al. miR-34a and miR-200c have an additive tumor-suppressive effect on breast cancer cells and patient prognosis. Genes (Basel). 2021;12:267. PubMed PMID: 33673143
Yu S, Yang L, Hong Q, Kuang X, Di G, Shao Z. MicroRNA-200a confers chemoresistance by antagonizing TP53INP1 and YAP1 in human breast cancer. BMC Cancer. 2018;18:74. PubMed PMID: 29329575
Samra N, Rashad M, ElMoneim N, Sanaa S, Maher K. The prognostic value of vitamin D receptor and its up-stream miR-27b and miR-125a expression in breast cancer patients. Gene Rep. 2021;23:101121.
Rahmani A, Talebian S, Nourbakhsh M, Avan A, Shahidsales S, Ferns G. Role of regulatory miRNAs of the PI3K/AKT signaling pathway in the pathogenesis of breast cancer. Gene. 2020;737:144459. PubMed PMID: 32045660.
Lo S, Wang C, Chen Y, Huang C, Wu T, Li L, et al. Berberine Activates Aryl Hydrocarbon Receptor but Suppresses CYP1A1 Induction through miR-21-3p Stimulation in MCF-7 Breast Cancer Cells. Molecules. 2017;22:1847. PubMed PMID: 29143794
Lin C, Gao B, Yan X, Lei Z, Chen K, Li Y, et al. MicroRNA 628 suppresses migration and invasion of breast cancer stem cells through targeting SOS1. Onco Targets Ther. 2018;11:5419-28.
Zhang L, Du Y, Xu S, Jiang Y, Yuan C, Zhou L, et al. DEPDC1, negatively regulated by miR-26b, facilitates cell proliferation via the up-regulation of FOXM1 expression in TNBC. Cancer Lett. 2019;442:242-51.
Li J, Li X, Kong X, Luo Q, Zhang J, Fang L. MiRNA-26b inhibits cellular proliferation by targeting CDK8 in breast cancer. Int J Clin Exp Med. 2014;7:558-65.
Ma X, Dong W, Su Z, Zhao L, Miao Y, Li N, et al. Functional roles of sialylation in breast cancer progression through miR-26a/26b targeting ST8SIA4. Cell Death Dis. 2016;7:2561. PubMed PMID: 28032858
Yan G, Li Y, Zhan L. Decreased miR-124-3p promoted breast cancer proliferation and metastasis by targeting MGAT5. Am J Cancer Res. 2019;9:585-96.
Seo S, Moon Y, Choi J, Yoon S, Jung K, Cheon J, et al.
The GTP binding activity of transglutaminase 2 promotes bone metastasis of breast cancer cells by downregulating microRNA-205. Am J Cancer Res. 2019; 9:597-607.
Lo T, Tsai W, Chen S. MicroRNA-21-3p, a berberine-induced miRNA, directly down-regulates human methionine adenosyl transferases 2A and 2B and inhibits hepatoma cell growth. PLoS One. 2013;8:e75628. PubMed PMID: 24098708
Kwon J, Factora D, Dey S, Kota J. A systematic review of miR-29 in cancer. Mol Ther Oncolytics. 2019;12:73-194.
Wang W, Liu Y, Guo J, He H, Mi X, Chen C, Xie J, et al. miR-100 maintains phenotype of tumor-associated macrophages by targeting mTOR to promote tumor metastasis via Stat5a/IL-1ra pathway in mouse breast cancer. Oncogenesis. 2018;7:97. PubMed PMID: 30563983
Haghi M, Taha M, Javeri A. Suppressive effect of exogenous miR‐16 and miR‐34a on tumorigenesis of breast cancer cells. J Cell Biochem. 2019;120:13342-53.
Moes M, Le Béchec A, Crespo I, Laurini C, Halavatyi A, Vetter G, et al. A novel network integrating a miRNA-203/SNAI1 Feedback loop which regulates epithelial to mesenchymal transition. PLoS ONE. 2012;7: e35440. PubMed PMID: 22514743
Chi Y, Jin Q, Liu X, Xu L, He X, Shen Y, et al. MiR-203 inhibits cell proliferation, invasion, and migration of non-small-cell lung cancer by downregulating RGS17. Cancer Manag Res. 2017;108: 2366-72.
Li D, Wang J, Ma L, Yang H, Jing J, Jia M, et al. Identification of serum exosomal miR-148a as a novel prognostic biomarker for breast cancer. Eur Rev Med Pharmacol Sci. 2020;24:7303-9.
Muller V, Oliveira-Ferrer L, Steinbach B, Pantel K, Schwarzenbach H. Interplay of lncRNA H19/miR-675 and lncRNA NEAT1/miR-204 in breast cancer. Mol Oncol. 2019; 13:1137-1149. PMCID: PMC6487715
Kong Y, Yang L, Wei W, Lyu N, Zou Y, Gao G, et al. CircPLK1 sponges miR-296-5p to facilitate triple- negative breast cancer progression. Epigenomics. 2019;11:1163-76.
Li Y, Guo X, Wei Y. LncRNA SNHG7 inhibits proliferation and invasion of breast cancer cells by regulating miR-15a expression. J BUON. 2020;25:1792-8.
Zhu S, Wang X, Wang J, Xi G, Liu Y. Downregulation of miR-22 contributes to epithelial-Mesenchymal transition in osteosarcoma by targeting twist. Front Oncol. 2020;10:406. PubMed PMID: 32391253
Zhang Q, Liu S, Zhang J, Ma X, Dong M, Sun B, et al. Roles and regulatory mechanisms of miR-30b in cancer, cardiovascular disease, and metabolic disorders. Exp Ther Med. 2021;21:44. PubMed PMID: 33273973
Hui Z, Peng Y, Jian W, Yuqiang Z, Mingchao Z, Zaijun W, et al. Clinical significance of tumor miR-21, miR-221, miR-143, and miR-106a as biomarkers in patients with osteosarcoma. Int J Biol Markers. 2019;34:184-93.
Purohit P, Edwards R, Tokatlidis K, Saini N. MiR-195 regulates mitochondrial function by targeting mitofusin-2 in breast cancer cells. RNA Biol. 2019;16:918-29.
Li X, Wang Q, Rui Y, Zhang C, Wang W, Gu J, et al. HOXC13-AS promotes breast cancer cell growth through regulating miR-497-5p/PTEN axis. J Cell Physiol. 2019;234:22343-51.
Liu J, Mi B, Wang Y, Shi C, Mi X, Lu Y, et al. miR-26a suppresses osteosarcoma migration and invasion by directly targeting HMGA1. Oncol Lett. 2018;15:8303-10.
Alhasan L. MiR-126 Modulates Angiogenesis in Breast Cancer by Targeting VEGF-A mRNA. Asian Pac J Cancer Prev. 2019;20:193-7.
Shinden Y, Hirashima T, Nohata N, Toda H, Okada R, Asai S, et al. Molecular pathogenesis of breast cancer: impact of miR-99a-5p and miR-99a-3p regulation on oncogenic genes. J Hum Genet. 2021;66:519-34.
Bahmanpour Z, Sheervalilou R, Choupani J, Shekari Khaniani M, Montazeri V, Mansoori Derakhshan S. A new insight on serum microRNA expression as novel biomarkers in breast cancer patients. J Cell Physiol. 2019;234:19199-211.
Gharib A, Khalifa A, Eed E, Banjer H, Shami A, Askary A, et al. Role of MicroRNA-31 (miR-31) in Breast Carcinoma Diagnosis and Prognosis. In Vivo. 2022;36:1497-502.
Song X, Liang Y, Sang Y, Li Y, Zhang H, Chen B, et al. circHMCU promotes proliferation and metastasis of breast cancer by sponging the let-7 family. Mol Ther Nucleic Acids. 2020;20,518-33.
Wang H, Peng R, Wang J, Qin Z, Xue L. Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage. Clin Epigenetics. 2018;10:59. PubMed PMID: 2971339.
Li H, Liu J, Chen J, Wang H, Yang L, Chen F, et al. A serum microRNA signature predicts trastuzumab benefit in HER2-positive metastatic breast cancer Patients. Nat Commun. 2019;9:1614. PubMed PMID: 29691399.
Satomi-Tsushita N, Shimomura A, Matsuzaki J, Yamamoto Y, Kawauchi J, Takizawa S, et al. Serum microRNA-based prediction of responsiveness to eribulin in metastatic breast cancer. PLoS One. 2019;14:e0222024. PubMed PMID: 31483849.
Chen JW, Dhahbi J. Identification of four serum miRNAs as potential markers to screen for thirteen cancer types. PLoS One. 2022;17:e0269554. PubMed PMID: 35687572.
Li X, Tang X, Li K, Lu L. Evaluation of serum MicroRNAs (miR-9-5p, miR-17-5p, and miR-148a-3p) as Potential biomarkers of breast cancer. Biomed Res Int. 2022;2022:9961412. PubMed PMID: 35111850.
Guo J, Liu C, Wang W, Liu Y, He H, Chen C, et al. Identification of serum miR-1915-3p and miR-455-3p as biomarkers for breast cancer. PLoS One. 2018;13: e0200716. PubMed PMID: 30048472
Cai B, Guo S, Li Y. MoS 2-based sensor for the detection of miRNA in serum samples related to breast cancer. Analytical methods. 2018;10:230-6.
Cardinali B, Tasso R, Piccioli P, Ciferri MC, Quarto R, Del Mastro L. Circulating miRNAs in Breast Cancer Diagnosis and Prognosis. Cancers (Basel). 2022;14:2317. PubMed PMID: 35681895
Zhong H, Yang J, Zhang B, Wang X, Pei L, Zhang L, et al. LncRNA GACAT3 predicts poor prognosis and promotes cell proliferation in breast cancer through regulation of miR-497/CCND2. Cancer Biomark. 2018;22: 787-97.
Loke SY, Lee ASG. The future of blood-based biomarkers for the early detection of breast cancer. Eur J Cancer. 2018;92:54-68.
Huang S, Luo Q, Peng H, Li J, Zhao M, Wang J, et al. A panel of serum noncoding RNAs for the diagnosis and monitoring of response to therapy in patients with breast cancer. Med Sci Monit. 2018;24:2476-88.
Hesari A, Azizian M, Darabi H, Nesaei A, Hosseini SA, Salarinia R, et al. Expression of circulating miR-17, miR-25, and miR-133 in breast cancer patients. J Cell Biochem. 2019;120:7109-114.
Luengo-Gil G, Gonzalez-Billalabeitia E, Perez-Henarejos SA, Navarro Manzano E, Chaves-Benito A, Garcia-Martinez E, et al. Angiogenic role of miR-20a in breast cancer. PLoS One. 2018;13:e0194638. PubMed PMID: 29617404
Mehrgou A, Akouchekian M. Therapeutic impacts of microRNAs in breast cancer by their roles in regulating processes involved in this disease. J Res Med Sci. 2017;22:130. PubMed PMID: 29387117
Yang C, Tabatabaei S, Ruan X, Hardy P. The dual regulatory role of MiR-181a in breast cancer. Cell Physiol Biochem. 2017;44:843-56.
Zhou W, Shi G, Zhang Q, Wu Q, Li B, Zhang Z. MicroRNA-20b promotes cell growth of breast cancer cells partly via targeting phosphatase and tensin homologue (PTEN). Cell Biosci. 2014;4:62. PubMed PMID: 25364498.
Chen Q, Yin D, Zhang Y, Yu L, Li XD, Zhou ZJ, et al. MicroRNA-29a induces loss of 5-hydroxymethylcytosine and promotes metastasis of hepatocellular carcinoma through a TET-SOCS1-MMP9 signaling axis. Cell Death Dis. 2017;8:e2906. PubMed PMID: 28661477
Mahmoudian M, Razmara E, Mahmud Hussen B, Simiyari M, Lotfizadeh N, Motaghed H, et al. Identification of a six-microRNA signature as a potential diagnostic biomarker in breast cancer tissues. J Clin Lab Anal. 2021;35:e24010. PubMed PMID: 34528314.
Sagar SK. miR-106b as an emerging therapeutic target in cancer. Genes Dis. 2021;9:889-899.
Hosseini Mojahed F, Aalami A, Pouresmaeil V, Amirabadi A, Qasemi Rad M, Sahebkar A. clinical evaluation of the diagnostic role of MicroRNA-155 in breast cancer. Int J Genomics. 2020;2020:9514831. PubMed PMID: 32964011
Jiang M, Zhang W, Zhang R, Liu P, Ye Y, Yu W, et al. Cancer exosome-derived miR-9 and miR-181a promote the development of early-stage MDSCs via interfering with SOCS3 and PIAS3 respectively in breast cancer. Oncogene. 2020;39:4681-94.
Maryam M, Naemi M, Hasani S. A comprehensive review on oncogenic miRNAs in breast cancer. J Genet. 2021;100:15. PubMed PMID: 33764337
Du Y, Wei N, Ma R, Jiang S, Song D. A miR-210-3p regulon that controls the Warburg effect by modulating HIF-1α and p53 activity in triple-negative breast cancer. Cell Death Dis. 2020;11:731. PubMed PMID: 32908121
Karami Fath M, Azargoonjahromi A, Kiani A, Jalalifar F, Osati P, Akbari Oryani M, et al. The role of epigenetic
modifications in drug resistance and treatment of breast cancer. Cell Mol Biol Lett. 2022;27:52. PubMed PMID: 35764927
Li Y, Hu Q, Luoreng Z, Yang J, Wang X, Ma Y, et al. Differential mRNA expression profiling reveals the role of MiR-375 in inflammation of bovine mammary epithelial cells. Animals (Basel). 2022;12:1431. PubMed PMID: 35681895
Jia Y, Jia Y, Shi Y, Zhao W, Martin J, Wang X, et al. Integrative analysis of LncRNA-mRNA signature reveals a functional LincRNA in triple-negative breast cancer. Holistic Integrative Oncology. 2022;1:9.
Abdulhussain M, Hasan N, Hussain A. Interrelation of the Circulating and Tissue MicroRNA-21 with Tissue PDCD4 Expression and the Invasiveness of Iraqi Female Breast Tumors. Indian J Clin Biochem. 2019; 34:26-38.
Taha M, Mitwally N, Soliman A, Yousef E. Potential diagnostic and prognostic utility of miR-141, miR-181b1, and miR-23b in breast cancer. Int J Mol Sci. 2020;21:8589. PubMed PMID: 33202602
Zheng J, Huang Y, Yao L, Liu Y, Liu S, Hu X, et al. Elevated miR-301a expression indicates a poor prognosis for breast cancer patients. Sci Rep. 2018;8:2225. PubMed PMID: 29396508.
Sheedy P, Medarova Z. The fundamental role of miR-10b in metastatic cancer. Am J Cancer Res. 2018;8: 1674-1688.
Wei F, Cao C, Xu X, Wang J. Diverse functions of miR-373 in cancer. J Transl Med. 2015;13:162. PubMed PMID: 25990556
Cao M, Nie W, Li J, Zhang Y, Yan X, Guan X, et al. MicroRNA-495 induces breast cancer cell migration by targeting JAM-A. Protein Cell. 2014;5:862-72.
Petri B, Klinge C. Regulation of breast cancer metastasis signaling by miRNAs. Cancer Metastasis Rev. 2020;39:837-86.
Khafaei M, Rezaie E, Mohammadi A, Shahnazi Gerdehsang P, Ghavidel S, Kadkhoda S, et al. miR-9: From function to therapeutic potential in cancer. J Cell Physiol. 2019;234:14651-65.
Li N, Miao Y, Shan Y, Liu B, Li Y, Zhao L, et al. MiR-106b and miR-93 regulate cell progression by suppression of PTEN via PI3K/Akt pathway in breast cancer. Cell Death Dis. 2017;8:e2796. PubMed PMID: 28518139
Deng J, Xu Y, Wang G. Identification of potential crucial genes and key pathways in breast cancer using bioinformatic analysis. Front Genet. 2019;10:695. PubMed PMID: 31428132
Fontana A, Barbano R, Dama E, Pasculli B, Rendina M, Morritti M, et al. Combined analysis of miR-200 family and its significance for breast cancer. Sci Rep. 2021;11:2980. PubMed PMID: 33536459
Lettlova S, Brynychova V, Blecha J, Vrana D, Vondrusova M, Soucek P, et al. MiR-301a-3p suppresses estrogen signaling by directly inhibiting ESR1 in ERα positive breast cancer. Cell Physiol Biochem. 2018; 46: 2601-15.