COVID-19 drug therapy

Authors

  • Kritsakorn Rayasilp Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University
  • Papavee Samatiwat Department of Pharmacology, Faculty of Medicine, Srinakarinwirot University

Keywords:

COVID-19, coronavirus, antiviral drugs

Abstract

Abstract
The emerging Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent of the Coronavirus Disease 2019 (COVID-19). This disease spreads easily, resulting in large outbreaks in many countries around the world. Currently, no drugs are directly effective treatment or prevention methods. Nevertheless, many studies showed that certain antivirus drugs, other drugs and alternative herbal medicines have ability to inhibit or interfere with SARS-CoV-2 infection. The repurposed antiviral drugs are readily used by patients with COVID-19, as new indications for SARS-CoV-2 infection. This article describes the role of antiviral drugs and herbs, such as finger root and turmeric, the mechanism of the action, and dose and treatment guidelines for COVID-19, according to their symptoms.

References

1. Zhu N, Zhang D, Wang W, et al. China novel coronavirus investigating and research team. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020;382:727-33.
2. Fisher D, Heymann D. Q&A: The novel coronavirus outbreak causing COVID-19. BMC medicine 2020;18:1-3.
3. Sohrabi C, Alsafi Z, O’Neill N, et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg
2020;76:71-6.
4. World Health Organization [Internet]. World Health Organization Coronavirus disease situation [updated 2021 May 12; cited 2021 May 12]. Available from: https://covid19.who.int/.
5. Gorbalenya AE BS, Baric RS, de Groot RJ, et al. The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat
Microbiol 2020;5:536-44.
6. Gerchman Y, Mamane H, Friedman N, et al. UV-LED disinfection of Coronavirus: Wavelength effect. J Photochem Photobiol B 2020;212:112044.
7. Chatterjee S. Understanding the nature of variations in structural sequences coding for coronavirus spike, envelope, membrane and nucleocapsid proteins of SARS-CoV-2. Envelope, membrane and nucleocapsid proteins of SARS-CoV-2 (March 28, 2020). 2020. Available at SSRN: https://ssrn.com/abstract=3562504 or http://dx.doi.org/10.2139/ssrn.3562504.
8. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181:271-80.
9. Sungnak W, Huang N, Bécavin C, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med 2020;26:681-7.
10. Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol 2020;92:418-23.
11. Leneva IA, Russell RJ, Boriskin YS, et al. Characteristics of arbidol-resistant mutants of influenza virus: implications for the mechanism of anti-influenza action of
arbidol. Antivir Res 2009;81:132-40.
12. Blaising J, Polyak SJ, Pécheur E-I. Arbidol as a broad-spectrum antiviral: An update. Antivir Res 2014;107:84-94.
13. Kadam RU, Wilson IA. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proc Natl Acad Sci 2017;114:206-14.
14. Khamitov R, Loginova S, Shchukina V, et al. Antiviral activity of Arbidol and its derivatives against the pathogen of severe acute respiratory syndrome in the cell cultures. Vopr Virusol 2008;53:9-13.
15. Wang Z, Yang B, Li Q, et al. Clinical features of 69 cases with coronavirus disease 2019 in Wuhan, China. Clin Infect Dis 2020;71: 769-77.
16. Nojomi M, Yassin Z, Keyvani H, et al. Effect of Arbidol (Umifenovir) on COVID-19: a randomized controlled trial. BMC Infect Dis 2020;20:1-10.
17. Uno Y. Camostat mesilate therapy for COVID-19. Intern Emerg Med 2020;15:1577-8.
18. Kawase M, Shirato K, van der Hoek L, et al. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J Virol 2012;86:6537-45.
19. Bose CK, Basu M. Camostat in COVID-19. Biochim Biophys Acta 2020;484:417-22.
20. Chu C, Cheng V, Hung I, et al. Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax 2004;59:252-6.
21. Liu Y, Liang C, Xin L, et al. The development of Coronavirus 3C-Like protease (3CLpro) inhibitors from 2010 to 2020. Eur J Med Chem 2020:112711.
22. ter Heine R, Van Waterschoot RA, Keizer RJ, et al. An integrated pharmacokinetic model for the influence of CYP3A4 expression on the in vivo disposition of
lopinavir and its modulation by ritonavir. J Pharm Sci 2011;100:2508-15.
23. Choy K-T, Wong AY-L, Kaewpreedee P, et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antivir Res 2020;178:104786.
24. Cao B, Wang Y, Wen D, et al. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N Engl J Med 2020;382:1787-99.
25. Horby PW, Mafham M, Bell JL, et al. Lopinavir–ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet 2020;396:1345-52.
26. Nicastri E, Petrosillo N, Bartoli TA, et al. National institute for the infectious diseases “L. Spallanzani”, IRCCS. Recommendations for COVID-19 clinical management. Infect Dis Rep 2020;12:3-9.
27. Harrison C. Coronavirus puts drug repurposing on the fast track. Nat Biotechnol 2020;38:379-81.
28. Clinical practice and treatment guideline for Coronavirus Disease 2019 (COVID-19) (last update 2 November 2021).
Department of medical services, Ministry of public health. Available at https:// covid19.dms.go.th/backend/Content/Content File/Covid_Health/Attach/ 25641103093725AM_update-CPG_COVID_v19.5_n_ 02211102.pdf.
29. Kongsaengdao S. Development antiviral drugs in the treatment of COVID-19. J Dept Med Ser 2020;45:5-8. Available at https:// he02.tci-thaijo.org/index.php/JDMS/ article/view/244735.
30. Chen J, Xia L, Liu L, et al., editors. Antiviral activity and safety of darunavir/cobicistatfor the treatment of COVID-19 Open Forum Infect Dis 2020;7:ofaa241.
31. Ko W-C, Rolain J-M, Lee N-Y, et al. Arguments in favour of remdesivir for treating SARS-CoV-2 infections. Int J Antimicrob Agents 2020;55:105933.
32. Al-Tawfiq JA, Al-Homoud AH, Memish ZA. Remdesivir as a possible therapeutic option for the COVID-19. Travel Med Infect Dis 2020;34:101615.
33. Gordon CJ, Tchesnokov EP, Feng JY, et al. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory
syndrome coronavirus. J Biol Chem 2020;295:4773-9.
34. Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020;382:929-36.
35. Amirian ES, Levy JK. Current knowledge about the antivirals remdesivir (GS-5734) and GS-441524 as therapeutic options for coronaviruses. One Health 2020;9:100128.
36. Frediansyah A, Tiwari R, Sharun K, et al Antivirals for COVID-19: A critical review. Clin Epidemiol Glob Health 2021;9:90-8.
37. Grein J, Ohmagari N, Shin D, et al. Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med 2020;382:2327-36.
38. Sidwell RW, Huffman JH, GP Khare L, et al. Broad-spectrum antiviral activity of virazole: 1-f8-D-ribofuranosyl-1, 2,
4-triazole-3-carboxamide. Science 1972;177:705-6.
39. McHutchison JG, Gordon SC, Schiff ER, et al. Interferon alfa-2b alone or in combination with ribavirin as initial treatment for chronic hepatitis C. N Eng J Med 1998;339:1485-92.
40. Randolph AG, Wang EE. Ribavirin for respiratory syncytial virus infection of the lower respiratory tract in infants and
young children. Cochrane Database Syst Rev 2010; 5. https://doi.org/10.1002/ 14651858.CD000181.pub3. Accessed 13 May 2021.
41. Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020;30:
269-71.
42. Te HS, Randall G, Jensen DM. Mechanism of action of ribavirin in the treatment of chronic hepatitis C. Gastroenterol Hepatol 2007;3:218.
43. Stockman LJ, Bellamy R, Garner P. SARS:systematic review of treatment effects.PLoS Med 2006;3:e343.
44. Tong S, Su Y, Yu Y, et al. Ribavirin therapy for severe COVID-19: A retrospective cohort study. Int J Antimicrob Agents 2020;56:106114.
45. Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19).Drug Discov Ther 2020;14:58-60.
46. Altinbas S, Holmes JA, Altinbas A. Hepatitis C Virus infection in pregnancy: An update. Gastroenterol Nurs 2020;43:12-21.
47. Oestereich L, Rieger T, Neumann M, et al. Evaluation of antiviral efficacy of ribavirin, arbidol, and T-705 (favipiravir) in a mouse model for Crimean-Congo hemorrhagic
fever. PLoS Negl Trop Dis 2014;8:e2804.
48. Oestereich L, Lüdtke A, Wurr S, et al. Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antivir Res 2014;105: 17-21.
49. Shiraki K, Daikoku T. Favipiravir, an antiinfluenza drug against life-threatening RNA virus infections. Pharmacol Ther 2020;209: 107512.
50. Nature. Calling all coronavirus researchers: Keep sharing, stay open. Nature 2020;578:7.
51. Cai Q, Yang M, Liu D, et al. Experimental treatment with favipiravir for COVID-19: an open-label control study. J Eng 2020;6: 1192-8.
52. Li G, De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov 2020;19:149-50.
53. Hayden FG, Shindo N. Influenza virus polymerase inhibitors in clinical development. Curr Opin Infect Dis 2019;32:176.
54. Delang L, Abdelnabi R, Neyts J. Favipiravir as a potential countermeasure against neglected and emerging RNA viruses. Antivir Res 2018;153:85-94.
55. Savarino A, Boelaert JR, Cassone A, et al Effects of chloroquine on viral infections: an old drug against today’s diseases.Lancet Infect Dis 2003;3:722-7.
56. Devaux CA, Rolain J-M, Colson P, et al. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19?. Int J Antimicrob Agents 2020;55:105938.
57. Roldan EQ, Biasiotto G, Magro P, et al. The possible mechanisms of action of 4-aminoquinolines (chloroquine/ hydroxychloroquine) against Sars-Cov-2
infection (COVID-19): A role for iron homeostasis?. Pharmacol Res 2020;158: 104904.
58. Yao X, Ye F, Zhang M, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020;71:732-9.
59. Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. BioScience Trends 2020;14:72-3.
60. Gautret P, Lagier J-C, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial.
Int J Antimicrob Agents 2020;56:105949.
61. Colson P, Rolain J-M, Lagier J-C, et al. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents 2020;55:105932.
62. Skipper CP, Pastick KA, Engen NW, et al. Hydroxychloroquine in nonhospitalized adults with early COVID-19: A randomized trial. Ann Intern Med 2020;173:623-31.
63. Mitjà O, Corbacho-Monné M, Ubals M, et al. Hydroxychloroquine for early treatment of adults with mild coronavirus disease 2019: A Randomized, Controlled trial. Clin Infect Dis 2020; ciaa1009. https://doi.org/10.1093/cid/ciaa1009. Accessed May 17, 2021.
64. Institute for Safe Medication Practices. Special Edition: Medication Safety Alert! 2020. Available at: https://ismp.org/acutecare/special-edition-medication-safetyalert-april-9-2020/covid-19. Accessed May12, 2021.
65. Sultana J, Cutroneo PM, Crisafulli S,. Azithromycin in COVID-19 patients: Pharmacological mechanism, clinical evidence and prescribing guidelines. Drug safety 2020;43:691-8.
66. Andreani J, Le Bideau M, Duflot I, et al. I n v i t r o t e s t i n g o f c o m b i n e d hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect. Microb Pathog 2020;145:104228.
67. Maisonnasse P, Guedj J, Contreras V, et al. Hydroxychloroquine use against SARSCoV-2 infection in non-human primates. Nat 2020;585:584-7.
68. Fiolet T, Guihur A, Rebeaud ME, et al. Effect of hydroxychloroquine with or without azithromycin on the mortality of coronavirus disease 2019 (COVID-19)
patients: A systematic review and metaanalysis. Clin Microb Infect 2021;27:19-27.
69. Derendorf H, Nave R, Drollmann A, et al. Relevance of pharmacokinetics and pharmacodynamics of inhaled corticosteroids to asthma. Eur Respir J 2006;28:1042-50.
70. Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 2020;395:473-5.
71. Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med 2020;180: 934-43.
72. Horby P, Landrain M. Low-cost dexamethasone reduces death by up to one third in hospitalised patients with severe respiratory complications of COVID-19. Recovery Trial Press Release.2020; 5. Available at: https://www.ox.ac.u k / n e w s / 2 0 2 0 - 0 6 - 1 6 - l o w - c o s t -dexamethasone-reduces-death-onethirdhospitalised-patients-severe.
Accessed 13 May 2021.
73. Sheppard M, Laskou F, Stapleton PP, et al. Hum Vaccines Immunother 2017; 13:1972-88. 74. Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with
tocilizumab. Proc Natl Acad Sci 2020;117: 10970-5.
75. Somers EC, Eschenauer GA, Troost JP, et al. Tocilizumab for treatment of mechanically ventilated patients with COVID-19. Clin Infect Dis 2020; ciaa954. https://doi.org/10.1093/cid/ciaa954.Accessed 17 May, 2021.
76. Rossotti R, Travi G, Ughi N, et al. Safety and efficacy of anti-il6-receptor tocilizumab use in severe and critical patients affected by coronavirus disease 2019: A comparative analysis. J Infect 2020;81:e11-e7.
77. Jiang S, Hillyer C, Du L. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends Immunol 2020;41:355-9.
78. Food and Drug Administration. Fact sheet for healthcare providers: emergency use authorization (EUA) of bamlanivimab and etesevimab. 2021. Available at: https://
www.fda.gov/media/145802/download. Accessed May 12, 2021.
79. Dougan M, Nirula A, Gottlieb RL, et al. Bamlanivimab+etesevimab for treatment of COVID-19. N Eng J Med 2021;385:1382-92.
80. National Institutes of Health [Internet].COVID-19 treatment guidelines [updated 2021 April 21; cited 2021 May 13]. Available from: https://files.covid19 treatmentguidelines.nih.gov/guidelines/ covid19treatmentguidelines.pdf.
81. Isa N, Abdelwahab S, Mohan S, et al. In vitro anti-inflammatory, cytotoxic and antioxidant activities of boesenbergin A, a chalcone isolated from Boesenbergia rotunda (L.)(fingerroot). Braz J Med Biol Res 2012;45:524-30.
82. K a n j a n a s i r i r a t P , S u k s a t u A ,Manopwisedjaroen S, et al. High-content screening of Thai medicinal plants reveals Boesenbergia rotunda extract and its
component Panduratin A as anti-SARSCoV-2 agents. Sci Rep 2020;10:1-12.
83. Cheenpracha S, Karalai C, Ponglimanont C, et al. Anti-HIV-1 protease activity of compounds from Boesenbergia pandurata. Bioorg Med Chem 2006;14:1710-4.
84. Maheshwari RK, Singh AK, Gaddipati J, et al. Multiple biological activities of curcumin: a short review. Life Sci 2006;78: 2081-7.
85. Mathew D, Hsu W-L. Antiviral potential of curcumin. J Funct Foods 2018;40:692-9.
86. Oso BJ, Adeoye AO, Olaoye IF. Pharmacoinformatics and hypothetical studies on allicin, curcumin, and gingerol as potential candidates against COVID-19- associated proteases. J Biomol Struct Dyn 2020;1-12. https://doi.org/10.1080/07391 102.2020.1813630. Accessed May 17, 2021.
87. Maeda K, Higashi-Kuwata N, Kinoshita N, et al. Neutralization of SARS-CoV-2 with IgG from COVID-19-convalescent plasma. Sci Rep 2021;11:1-12.
88. Chen L, Xiong J, Bao L, et al. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis 2020;20:398-400.
89. Soo Y, Cheng Y, Wong R, et al. Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone
treatment in SARS patients. Clin Microbiol Infect 2004;10:676-8.
90. Arabi Y, Balkhy H, Hajeer AH, et al. Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with Middle East respiratory
syndrome coronavirus infection: a study protocol. Springerplus 2015;4:1-8.
91. Syal K. COVID-19: herd immunity and convalescent plasma transfer therapy. J Med Virol 2020;92:1380-2.
92. Shen C, Wang Z, Zhao F, et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 2020; 323:1582-9.
93. Cao W, Liu X, Bai T, et al., editors. Highdose intravenous immunoglobulin as a therapeutic option for deteriorating patients with coronavirus disease 2019. Open Forum Infect Dis 2020;7:ofaa102.
94. Simonovich VA, Burgos Pratx LD, Scibona P, et al. A randomized trial of convalescent plasma in Covid-19 severe pneumonia. N Engl J Med 2021;384:619-29.
95. Lagging M, Wejstål R, Uhnoo I, et al. Treatment of hepatitis C virus infection: u p d a t e d S w e d i s h c o n s e n s u s recommendations. Scand J Infect Dis 2009;41:389-402.

Downloads

Published

2021-12-30

How to Cite

1.
Rayasilp K, Samatiwat P. COVID-19 drug therapy. J Med Health Sci [Internet]. 2021 Dec. 30 [cited 2024 Apr. 26];28(3):175-94. Available from: https://he01.tci-thaijo.org/index.php/jmhs/article/view/254038

Issue

Section

Review Article (บทความวิชาการ)