Virulence factors of foodborne pathogenic Vibrio parahaemolyticus

Authors

  • Kaknokrat Chonsin

Keywords:

Vibrio parahaemolyticus, virulence factors, TDH, TRH, T3SS

Abstract

บทคัดย่อ
Vibrio parahaemolyticus เป็นหนึ่งในสาเหตุหลักของการระบาดของโรคอาหารเป็นพิษหรือโรคกระเพาะอาหารและลำไส้อักเสบในประเทศไทยและประเทศอื่นๆ ซึ่งเกิดจากการบริโภคอาหารทะเลแบบดิบ หรือกึ่งสุกกึ่งดิบ การแพร่กระจายของการติดต่อของเชื้อ V. parahaemolyticus สายพันธุ์ต่างๆ ในคนและสิ่งแวดล้อมซึ่งเกี่ยวข้องกับปัจจัยก่อโรคนั้นยังคงมีการศึกษาค้นคว้าต่อไป บทความนี้กล่าวถึงปัจจัยก่อความรุนแรงของโรคที่สำคัญของแบคทีเรีย V. parahaemolyticus สายพันธุ์ก่อโรค อันประกอบด้วย สารพิษ 2 ชนิด คือ thermostable direct hemolysin (TDH) และ thermostable direct-related hemolysin (TRH) กับระบบขนส่งโปรตีน type three secretion system (T3SS) 2 ระบบ คือ ระบบที่ 1 T3SS1 และระบบที่ 2 T3SS2 จากการศึกษาคุณสมบัติของปัจจัยก่อความรุนแรงของโรคแต่ละชนิดพบว่า สารพิษ TDH กับ TRH และ ระบบขนส่งโปรตีน T3SS2 มีผลให้เกิดอุจจาระร่วง (enterotoxicity) สำหรับระบบขนส่งโปรตีน T3SS1 ทำให้เกิดการตายของเซลล์ (cytotoxicity) และส่งเสริมให้แบคทีเรียมีชีวิตรอดในเซลล์โฮสต์ได้ การใช้ตัวติดตามปัจจัย รุนแรงในการก่อโรคของสายพันธุ์ก่อโรคจะเป็นประโยชน์สำหรับการเฝ้าระวังทางระบาดวิทยาและการติดตามสายพันธุ์

Abstract
Vibrio parahaemolyticus is one of the major causes of food poisoning or gastroenteritis outbreaks in Thailand and other countries due to the improper seafood consumption. The spread of transmission of V. parahaemolyticus strains in humans and environments and their virulence factors remains to be established. This study reviewed the virulence factors of pathogenic V. parahaemolyticus strains which composed of 2 hemolysins, thermostable direct hemolysin (TDH) and thermostable direct-related hemolysin (TRH), as well as 2 kinds of type three secretion system (T3SS), T3SS1 and T3SS2. The TDH, TRH and T3SS2 cause enterotoxicity while the T3SS1 contributes to cytotoxicity and enhances the survival of bacteria in host cells. More significantly, probing the virulence factors of pathogenic strains would be essential for the epidemiological surveillance and monitoring.

 

References

1. DePaola A, Hopkins LH, Peeler JT, et al.Incidence of Vibrio parahaemolyticus in U.S. coastal waters and oysters. Appl Environ Microbiol 1990;56:2299-302.
2. Alipour M, Issazadeh K, Soleimani J. Isolation and identification of Vibrio parahaemolyticus from seawater and sediment samples in the southern coast of the Caspian Sea. Comp Clin Path 2014;23:129-33.
3. Fujino T, Okuno Y, Sakada D, et al. On the bacteriological examination of Shirasu food poisoning. J Jpn Assoc Infect Dis 1953;25:11-2.
4. Haendiges J, Jones J, Myers RA, et al. A nonautochthonous U.S. strain of Vibrio parahaemolyticus isolated from Chesapeake bay oysters caused the outbreak in Maryland in 2010. Appl Environ Microbiol 2016;82:3208-16.
5. Martinez-Urtaza J, Powell A, Jansa J, et al. Epidemiological investigation of a foodborne outbreak in Spain associated with the U.S. West coast genotypes of Vibrio parahaemolyticus. Springerplus 2016;5:87.
6. Su YC, Liu C. Vibrio parahaemolyticus: A concern of seafood safety. Food Microbiol 2007;24:549-58.
7. Chobkatanyoo A. Food poisoning. Annual Epidemiological Surveillance Report. 2011:105-7.
8. Pansuwan N. Food poisoning. Annual Epidemiological Surveillance Report. 2016:121-2.
9. Yo s h i k u r a H . D e c l i n i n g V i b r i o parahaemolyticus and Salmonella, increasing Campylobacter and persisting no-rovirus food poisonings: inference derived from Food Poisoning Statistics of Japan. Jpn J Infect Dis 2019; doi:10.7883/yoken.JJID.2019.247.
10. Honda T, Ni Y, Miwatani T. Purification and characterization of a hemolysin produced by a clinical isolate of Kanagawa phenomenon-negative Vibrio parahaemolyticus and related to the thermostable direct hemolysin. Infect Immun 1988;56:961-5.
11. Honda T, Iida T. The pathogenicity of Vibrio parahaemolyticus and the role of the thermostable direct haemolysin and related haemolysins. Rev Med Microbiol 1993;4:106-13.
12. Robert-Pillot A, Guenole A, Lesne J, et al. Occurrence of the tdh and trh genes in Vibrio parahaemolyticus isolates from waters and raw shellfish collected in two French coastal areas and rom seafood imported into France. Int J Food Microbiol 2004;91:319-25.
13. Makino K, Oshima K, Kurokawa K, et al. Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of Vibrio cholerae. Lancet 2003;361:743-9.
14. Okada N, Iida T, Park K. Identification and characterization of a novel type III secretion system in trh-positive Vibrio parahaemolyticus strain TH3996 reveal genetic lineage and diversity of pathogenic machinery. Infect Immun 2009;77:904-13.
15. Nair GB, Ramamurthy T, Bhattacharya SK, et al. Global dissemination of Vibrio parahaemolyticus serotype O3:K6 and its serovariants. Clin Microbiol Rev 2007;20:39-48.
16. Serichantalergs O, Bhuiyan NA, Nair GB, et al. The dominance of pandemic serovars of Vibrio parahaemolyticus in expatriates and sporadic cases of diarrhoea in Thailand, and a new emergent serovar (O3:K46) with pandemic traits. J Med Microbiol 2007;56:608-13.
17. Powell A, Baker-austin C, Wagley S,et al. Isolation of pandemic Vibrio parahaemolyticus from UK water and shellfish produce. Microb Ecol 2013;2:2-5.
18. Han H, Wong H, Kan B, et al. Genome plasticity of Vibrio parahaemolyticus: microevolution of the ‘pandemic group’. BMC Genomics 2008;9:570.
19. Manatsathit S, Dupont HL, Farthing M,et al. Guildeline for the management ofacute diarrhea in adults. J Gastroenterol Hepatol 2002;17:S54-71.
20. Nishibuchi M, Kaper JB. Duplication and variation of the thermostable direct haemolysin (tdh) gene in Vibrio parahaemolyticus. Mol Microbiol 1990;4:87-99.
21. Wagatsuma S. A medium for the test of hemolytic reaction of Vibrio parahaemolyticus. Media Circle 1968;13:159-62.
22. Sakazaki R, Tamura K, Kato T, et al.Studies on the enteropathogenic,facultatively halophillic bacterium, Vibrioparahaemolyticus. III. Enteropathogenicity.Jpn J Med Sci Biol 1968;21:325-31.
23. Baffone W, Casaroli A, Campana R, et al. “Invivo” studies on the pathophysiological mechanism of Vibrio parahaemolyticus TDH+-induced secretion. Microb Pathog 2005;38:133-7.
24. Brown DF, Spaulding PL, Twedt RM. Enteropathogenicity of Vibrio parahaemolyticus in the ligated rabbit ileum. Appl Environ Microbiol 1977;33:10-4.
25. Douet J, Castroviejo M, Dodin A, et al. Purification and characterization of Kanagawa haemolysin from Vibrio parahaemolyticus. Res Microbiol 1992;143:569-77.
26. Honda T, Goshima K, Takeda Y, et al. Demonstration of the cardiotoxicity of the thermostable direct hemolysin (lethal toxin) produced by Vibrio parahaemolyticus. Infect Immun 1976;13:163-71.
27. Honda T, Taga S, Takeda T, et al. Identification of lethal toxin with the thermostable direct hemolysin produced by Vibrio parahaemolyticus, and some physicochemical properties of the purified toxin. Infect Immun 1976;13:133-9.
28. Honda T, Ni Y, Miwatani T, et al. The thermostable direct haemolysin of V. parahaemolyticus is a pore-forming toxin. Can J Microbiol 1992;38:1175-80.
29. Matsuda S, Kodama T, Okada N, et al. Association of Vibrio parahaemolyticus thermostable direct hemolysin with lipid rafts is essential for cytotoxicity
but not hemolytic activity. Infect Immun 2010;78:603-10.
30. Miyamoto Y, Obara Y, NikkawaT, et al. Simplified purification and biophysicochemical characteristics of hemolysin of Vibrio parahaemolyticus.Infect Immun 1980;28:567-76.
31. Yoh M, Tang GQ, Iida T. Phosphorylation of a 25 kDa protein is induced by thermostable direct hemolysin of V. parahaemolyticus. Int J Biochem Cell Biol 1996;28:1365-9.
32. Raimondi F, Kao JPY, Kaper JB, et al. Calcium dependent intestinal chloride secretion by V. parahaemolyticus thermostable direct hemolysin in a rabbit model. Gastroenterol 1995;109:381-6.
33. Iida T, Park KS, Suthienkul O, et al.Close proximity of the tdh, trh andure genes on the chromosome of Vibrio parahaemolyticus. Microbiology 1998;144:2517-23.
34. Iida T, Yamamoto K. Cloning and expression of two genes encoding highly homologous hemolysins from a Kanagawa-phenomenon-positive Vibrio parahaemolyticus T4750 strain. Gene 1990;93:9-15.
35. Nishibuchi M, Kaper JB. Thermostable direct hemolysin gene of Vibrio parahaemolyticus: a virulence gene acquired by a marine bacterium. Infect Immun 1995;63:2093-9.
36. Kaper JB, Campen RK, Seidler RJ, et al. Cloning of the thermostable direct or Kanagawa phenomenon-associated hemolysin of Vibrio parahaemolyticus.Infect Immun 1984;45:290-2.
37. Nishibuchi M, Kaper JB. Nucleotide sequence of the thermostable direct hemolysin gene of Vibrio parahaemolyticus. J Bacteriol 1985;162:558-64.
38. Nishibuchi M, Hill WE, Zon G, et al.Synthetic oligodeoxyribonucleotide probes to detect Kanagawa phenomenonpositive Vibrio parahaemolyticus. J Clin Microbiol 1986;23:1091-5.
39. Alam MJ, Miyoshi S, Shinoda S. Studies on pathogenic Vibrio parahaemolyticus during a warm weather season in the Seto Inland Sea, Japan. Environ Microbiol 2003;5:706-10.
40. Borthong J, Utrarachkij, Assavanig A, et al. A novel sensitive and locus-specific single tube multiplex polymerase chain reaction for detecting and/or identifying Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus in shrimp samples. Inter J Infect Dis 2012;16(S1):e404.
41. Caburlotto G, Gennari M, Ghidini V, et al. Presence of T3SS2 and other virulencerelated genes in tdh-negative Vibrio parahaemolyticus environmental strains isolated from marine samples in the area of the Venetian Lagoon, Italy. FEMS Microbiol Ecol 2009;70:506-14.
42. Chao G, Jiao X, Zhou X, et al. Serodiversity,pandemic O3:K6 clone, molecular typing, and antibiotic susceptibility of foodborne and clinical Vibrio parahaemolyticus isolates in Jiangsu, China. Foodborne Pathog Dis 2009;6:1021-8.
43. Chen X, Zhu Q, Yu F, et al. Serology, virulence and molecular characteristics of Vibrio parahaemolyticus isolated from seafood in Zhejiang province. PLoS One 2018;13:e0204892.
44. Roque A, Lopez-Joven C, Lacuesta B, et al. Detection and identification of tdhand trh-positive Vibrio parahaemolyticus strains from four species of cultured bivalve molluscs on the Spanish Mediterranean coast. Appl Environ Microbiol 2009:75:7574-7.
45. Suktua N, Siripanichgon K, Kositanont U, et al. Detection of pathogenic Vibrio parahaemolyticus isolated from clinical and environmental samples by multiplex polymerase chain reaction. Thai J Genet 2013;S(1):321-4.
46. Honda T, Ni YX, Hata A, et al. Properties of a hemolysin related to the thermostable direct hemolysin produced by a Kanagawa phenomenon negative, clinical isolate of
Vibrio parahaemolyticus. Can J Microbiol 1990;36:395-9.
47. Suthienkul O, Ishibashi M, Iida T, et al. Urease production correlates with the possession of the trh gene in Vibrio parahaemolyticus strains isolated in Thailand. J Infect Dis 1995;172:1405-8.
48. Iida T, Suthienkul O, Park K, et al. Evidence for genetic linkage between the ure and trh genes in Vibrio parahaemolyticus. J Med Microbiol 1997;46:639-45.
49. Honda T, Iida T, Akeda Y, et al. Sixty years of Vibrio parahaemolyticus research:Despite decades of research following a severe foodborne outbreak in Japan,this pathogen remains mysterious at the molecular level. Microbe 2008;3:462-6.
50. Park KS, Ono T, Rokuda M, et al. Functional characterization of two type III secretion systems of Vibrio parahaemolyticus. Infect Immun 2004;72:6659-65.
51. Gode-potratz CJ, Chodur DM, Mccarter LL. Calcium and iron regulate swarming and type III secretion inVibrio parahaemolyticus.J Bacteriol 2010;192:6025-38.
52. Ono T, Park KS, Ueta M, et al. Identification of proteins secreted via Vibrio parahaemolyticus type III secretion system 1. Infect Immun 2006;74:1032-42.
53. Sreelatha A, Bennett TL, Zheng H, et al. Vibrio effector protein, VopQ, forms a lysosomal gated channel that disrupts host ion homeostasis and autophagic flux. PNAS 2013;110:11559-64.
54. Burdette DL, Seemann J, Orth K. Vibrio VopQ induces PI3-kinase-independent autophagy and antagonizes phagocytosis. Mol Microbiol 2009;73:639-49.
55. Wang R, Zhong Y, Gu X, et al. The pathogenesis, detection, and prevention of Vibrio parahaemolyticus. Front Microbiol 2015;6:144.
56. Casselli T, Lynch T, Southward CM, et al. Vibrio parahaemolyticus inhibition of Rho family GTPase activation requires a functional chromosome I type III secretion system. Infect Immun 2008;76:2202-11.
57. Black DS, Bliska JB. The RhoGAP activity of the Yersinia pseudotuberculosis cytotoxin YopE is required for antiphagocytic function and virulence. Mol Microbiol 2000;37:515-27.
58. Frithz-Lindsten E, Du Y, Rosqvist R, et al. Intracellular targeting of exoenzyme S of Pseudomonas aeruginosa via type III-dependent translocation induces phagocytosis resistance, cytotoxicity and disruption of actin microfilaments. Mol Microbiol 1997;25:1125-39.
59. Trosky JE, Mukherjee S, Burdette DL, et al. Inhibition of MAPK signaling pathways by VopA from Vibrio parahaemolyticus. J Biol Chem 2004;279:51953-7.
60. Zhang L, Krachler AM, Broberg C, et al.Type III effector VopC mediates invasion for Vibrio species. Cell Rep 2012;1:453-60.
61. de Souza Santos M, Salomon D, Orth K.T3SS effector VopL inhibits the host ROS response, promoting the intracellular survival of Vibrio parahaemolyticus. PLOS Pathog 2017;13:e1006438.
62. Kodama T, Rokuda M, Park K, et al. Identification and characterization of VopT, a novel ADP-ribosyltransferase effector protein secreted via the Vibrio parahaemolyticus type III secretion system 2. Cell Microbiol 2007;9:2598-609.
63. He Y, Wang H, Chen L. Comparative secretomics reveals novel virulencea s s o c i a t e d f a c t o r s o f V i b r i o parahaemolyticus. Front Microbiol 2015;6:707.
64. Hiyoshi H, Kodama T, Saito K, et al. VopV, an F-actin-binding type III secretion effector, is required for Vibrio parahaemolyticusinduced enterotoxicity. Cell Host Microbe
2011;10:401-9.

Downloads

Published

2020-04-29

How to Cite

1.
Chonsin K. Virulence factors of foodborne pathogenic Vibrio parahaemolyticus. J Med Health Sci [Internet]. 2020 Apr. 29 [cited 2024 Apr. 24];27(1):160-72. Available from: https://he01.tci-thaijo.org/index.php/jmhs/article/view/241833

Issue

Section

Review Article (บทความวิชาการ)