Inflammation and Cancer: The Most Recent Findings
DOI:
https://doi.org/10.31584/jhsmr.20241082Keywords:
biomarker, cancer, immunotherapy, inflammation, tumor micro-surroundingsAbstract
An in-depth investigation into the complicated relationship between inflammation and cancer provided new findings. We explored new developments that shone a light on the involvement of inflammation in the emergence of many cancers in this study. What we know of this complex interaction has been shaped over time by historical observations that have transformed into molecular mechanistic findings. Understanding the importance of the invasion of immune cells in tumor micro-surroundings, gaining knowledge of the signaling mechanisms that control inflammation-induced carcinogenesis, and identifying inflammatory agents as possible biomarkers for diagnosis and the outlook may lead to novel therapeutic strategies and improved patient outcomes. The combination of immunotherapies and other treatment techniques offers a promising way to enhance therapeutic effects. The development of novel therapies like adoptive T-cell therapy and oncolytic viral therapy further emphasizes how far we have come. The need to manage immune evasion mechanisms and improve these therapeutic approaches further are still problems. We describe the intriguing possibility of using inflammation as a tool for targeted treatment for cancer in this investigation, with possibilities for better patient outcomes and alternative treatment methods.
References
Soto-Heredero G, Gómez de Las Heras MM, Gabandé-Rodríguez E, Oller J, Mittelbrunn M. Glycolysis - a key player in the inflammatory response. FEBS J 2020;287:3350-69. doi: 10.1111/febs.15327.
Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection. Front Immunol 2018:13;9:754. doi: 10.3389/fimmu.2018.00754
Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2002;2:795–803.
Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther 2021;221.
Gun SY, Lee SWL, Sieow JL, Wong SC. Targeting immune cells for cancer therapy. Redox Biol 2019;25:101174.
Greten FR, grivennikov si. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity 2019;51:27-41. doi: 10.1016/j.immuni.2019.06.025.
Rah B, Rather RA, Bhat GR, Baba AB, Mushtaq I, Farooq M, et al. JAK/STAT Signaling: molecular targets, therapeutic opportunities, and limitations of targeted inhibitions in solid malignancies. Front Pharmacol 2022;13:821344.
Ni Y, Low JT, Silke J, O'Reilly LA. Digesting the role of jak-stat and cytokine signaling in oral and gastric cancers. Front Immunol 2022;13:835997. doi: 10.3389/fimmu.2022.835997
Lan T, Chen L, Wei X. Inflammatory Cytokines in Cancer: Comprehensive Understanding and Clinical Progress in Gene Therapy. Cells 2021;10:100. doi: 10.3390/cells10010100.
Watson J, Salisbury C, Banks J, Whiting P, Hamilton W. Predictive value of inflammatory markers for cancer diagnosis in primary care: a prospective cohort study using electronic health records. Br J Cancer 2019;120:1045-51. doi: 10.1038/s41416-019-0458-x.
Ravindranathan D, Master VA, Bilen MA. Inflammatory markers in cancer immunotherapy. Biology (Basel) 2021;10:325. doi: 10.3390/biology10040325.
Zhang Z, Liu X, Chen D, Yu J. Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Signal Transduct Target Ther 2022;7:258. doi: 10.1038/s41392-022-01102-y.
Dougan M, Luoma AM, Dougan SK, Wucherpfennig KW. Understanding and treating the inflammatory adverse events of cancer immunotherapy. Cell 2021;184:1575-88. doi: 10.1016/j.cell.2021.02.011.
Evgin L, Vile RG. Parking CAR T Cells in Tumours: Oncolytic Viruses as Valets or Vandals? Cancers (Basel) 2021;13:1–14.
Marchini A, Daeffler L, Pozdeev VI, Angelova A, Rommelaere J. Immune conversion of tumor microenvironment by oncolytic viruses: the protoparvovirus H-1PV case study. Front Immunol 2019;10:1848. doi: 10.3389/fimmu.2019.01848.
Liu C, Yang M, Zhang D, Chen M, Zhu D. Clinical cancer immunotherapy: Current progress and prospects. Front Immunol 2022;13. doi: 10.3389/fimmu.2022.961805.
Korniluk A, Koper O, Kemona H, Dymicka-Piekarska V. From inflammation to cancer. Ir J Med Sci2017;186:57–62.
Nunney L, Maley CC, Breen M, Hochberg ME, Schiffman JD. Peto’s paradox and the promise of comparative oncology. Philos Trans R Soc Lond B Biol Sci 2015;370:20140177. doi: 10.1098/rstb.2014.0177.
Pukkala E, Martinsen JI, Lynge E, Gunnarsdottir HK, Sparén P, et al. Occupation and cancer-follow-up of 15 million people in five Nordic countries. Acta Oncol 2009;48:646-790. doi: 10.1080/02841860902913546.
Maman S, Witz IP. A history of exploring cancer in context. Nat Rev Cancer 2018;18:359–76.
Singh S, Anshita D, Ravichandiran V. MCP-1: Function, regulation, and involvement in disease. Int Immunopharmacol 2021;101.
Chen Y, Zeng Y, Zhu X, Miao L, Liang X, Duan J, et al. Significant difference between sirolimus and paclitaxel nanoparticles in anti-proliferation effect in normoxia and hypoxia: The basis of better selection of atherosclerosis treatment. Bioact Mater 2020;6:880–9.
Mehu M, Narasimhulu CA, Singla DK. Inflammatory cells in atherosclerosis. Antioxidants (Basel) 2022;11:233. doi:10.3390/antiox11020233.
Kany S, Vollrath JT, Relja B. Cytokines in Inflammatory Disease. Int J Mol Sci 2019;20:6008. doi:10.3390/ijms20236008.
Agbaje EO, Charles OO. Anti-inflammatory and cytokines modulatory activities of spondias mombin linn.(Anacardiaceous) in wound healing: roles of IL6. J Phytopharmacol 2022;23:24. doi: 10.31254/phyto.2022.11406.
Morita TCAB, Criado PR, Criado RFJ, Trés GFS, Sotto MN. Update on vasculitis: overview and relevant dermatological aspects for the clinical and histopathological diagnosis – Part II. An Bras Dermatol 2020;95:493–507. doi: 10.1016/j.abd.2020.04.004.
Li H, Wu M, Zhao X. Role of chemokine systems in cancer and inflammatory diseases. MedCom 2022;3:e147. doi: 10.1002/mco2.147.
Crijns H, Vanheule V, Proost P. Targeting chemokine-glycosaminoglycan interactions to inhibit inflammation. Front Immunol 2020;11:483. doi:10.3389/fimmu.2020.00483.
Do HTT, Lee CH, Cho J. Chemokines and their receptors: multifaceted roles in cancer progression and potential value as cancer prognostic markers. Cancers (Basel) 2020;12:287. doi: 10.3390/cancers12020287.
Duan T, Du Y, Xing C, Wang HY, Wang RF. Toll-like receptor signaling and its role in cell-mediated immunity. Front Immunol 2022;13:812774. doi: 10.3389/fimmu.2022.812774.
Briukhovetska D, Dörr J, Endres S. Interleukins in cancer: from biology to therapy. Nat Rev Cancer 2021;21:481–99. doi: 10.1038/s41568-021-00363-z
Xu M, Zhang T, Xia R, Wei Y, Wei X. Targeting the tumor stroma for cancer therapy. Mol Cancer 2022;21:208. doi: 10.1186/s12943-022-01670-1.
Marshall JS, Warrington R, Watson W, Kim HL. An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol 2018;14(Suppl 2):49. doi:10.1186/s13223-018-0278-1.
Feng Y, Ye D, Wang Z, Pan H, Lu X, Wang M, et al. The Role of Interleukin-6 Family Members in Cardiovascular Diseases. Front Cardiovasc Med 2022;9:818890.
Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun 2020;11:5120. doi: 10.1038/s41467-020-18794-x.
Zeng L, Ma G, Chen K, Zhou Q. Bibliometric analysis of rheumatic immune related adverse events associated with immune checkpoint inhibitors. Front Immunol 2023;14:1242336. doi: 10.3389/fimmu.2023.1242336.
Wojtukiewicz MZ, Rek MM, Karpowicz K, Górska M, Polityñska B, Wojtukiewicz AM, et al. Inhibitors of immune checkpoints-PD-1, PD-L1, CTLA-4-new opportunities for cancer patients and a new challenge for internists and general practitioners. Cancer Metastasis Rev 2021;40:949–82.
Zhu Y, Liu J. The role of neoantigens in cancer immunotherapy. Front Oncol 2021;11:682325. doi: 10.3389/fonc.2021.682325.
Tappia PS, Ramjiawan B. Biomarkers for Early Detection of Cancer: Molecular Aspects.- Int J Mol Sci 2023;24:5272. doi: 10.3390/ijms24065272.
Koguchi D, Matsumoto K, Ikeda M, Shimizu Y, Nakamura M, Shiono Y,et al. Gemcitabine–Paclitaxel chemotherapy for patients with advanced urothelial cancer refractory to cisplatin-based chemotherapy: predictive role of pgk1 for treatment response to cytotoxic chemotherapy. Int J Mol Sci 2022;23:12119. doi: 10.3390/ijms232012119.
Gujrati H, Ha S, Waseem M, Wang BD. Downregulation of miR-99b-5p and upregulation of nuclear mTOR cooperatively promotes the tumor aggressiveness and drug resistance in African American prostate Cancer. Int J Mol Sci 2022;23:9643. doi: 10.3390/ijms23179643.
Niture S, Tricoli L, Qi Q, Gadi S, Hayes K, Kumar D. MicroRNA-99b-5p targets mTOR/AR axis, induces autophagy and inhibits prostate cancer cell proliferation. Tumour Biol 2022;44:107-27. doi: 10.3233/TUB-211568.
Yoshida T, Kates M, Fujita K, Bivalacqua TJ, McConkey DJ. Predictive biomarkers for drug response in bladder cancer. Int J Urol 2019;26:1044–53.
Sucher R, Schroecksnadel K, Weiss G, Margreiter R, Fuchs D, Brandacher G. Neopterin, a prognostic marker in human malignancies. Cancer Lett 2010;287:13–22.
Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol 2018;14:576–90.
Tayeri K, Asadollahi K, Madani N, Haghjooy Javanmard S. Does COVID-19 escalate aging process? a possible concern. Adv Biomed Res 2022;11:106. doi:10.4103/abr.abr_350_21.
Vita GL, Politano L, Berardinelli A, Vita G. Have duchenne muscular dystrophy patients an increased cancer risk? J Neuromuscul Dis 2021;8:1063–7.
Jones L, Naidoo M, Machado LR, Anthony K. The Duchenne muscular dystrophy gene and cancer. Cell Oncol (Dordr) 2021;44:19–32.
Roi A, Roi CI, Negrutiu ML, RiviŞ M, Sinescu C, Rusu LC. The Challenges of OSCC Diagnosis: Salivary Cytokines as Potential Biomarkers. J Clin Med 2020;9:1–16.
Ma L, Jiang F, Fan X, Wang L, He C, Zhou M, et al. Metal–organic-framework-engineered enzyme-mimetic catalysts. Advanced Materials 2020;32:2003065.
Gil M, Kim KE. Interleukin-18 is a prognostic biomarker correlated with CD8+ T cell and natural killer cell infiltration in skin cutaneous melanoma. J Clin Med 2019;8:1993.
Michela B. Liquid Biopsy: a family of possible diagnostic tools. Diagnostics (Basel) 2021;11:1391.
Kumari S, Mukherjee S, Sinha D, Abdisalaam S, Krishnan S, Asaithamby A. Immunomodulatory effects of radiotherapy. Int J Mol Sci 2020;21:1–29.
Rao Z, Gao J, Zhang B, Yang B, Zhang J. Cisplatin sensitivity and mechanisms of anti-HPV16 E6-ribozyme on cervical carcinoma CaSKi cell line. Chinese-German J Clin Oncol 2012;11:237–42.
Hill RM, Rocha S, Parsons JL. Overcoming the Impact of Hypoxia in Driving Radiotherapy Resistance in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2022;14:4130.
Liu G, Zhang S, Yang S, Shen C, Shi C, Diao W. CircDiaph3 influences PASMC apoptosis by regulating PI3K/AKT/mTOR pathway through IGF1R. 3 Biotech 2023;13:342.
Deichaite I, Hopper A, Krockenberger L, Sears TJ, Sutton L, Ray X, et al. Germline genetic biomarkers to stratify patients for personalized radiation treatment. J Transl Med 2022;20:360. doi: 10.1186/s12967-022-03561-x.
Rizzo A, Mollica V, Santoni M, Massari F. Cancer immunotherapy: harnessing the immune system to fight cancer. J Clin Med 2022;11:6356. doi: 10.3390/jcm11216356.
Nassar SF, Raddassi K, Ubhi B, Doktorski J, Abulaban A. Precision medicine: steps along the road to combat human cancer. Cells 2020;9:2056. doi: 10.3390/cells9092056.
Puig-Saus C, Sennino B, Peng S, Wang CL, Pan Z, Yuen B, et al. Neoantigen-targeted CD8+ T cell responses with PD-1 blockade therapy. Nature 2023;615:697–704.
Berger MF, Mardis ER. The emerging clinical relevance of genomics in cancer medicine. Nat Rev Clin Oncol 2018;15:353–65.
Talebizadeh P, Babaie M, Brown R, Rahimzadeh H, Ristovski Z, Arai M. The role of non-thermal plasma technique in NOx treatment: A review. Renewable Sustainable Energy Rev 2014;40:886–901.
Degirmenci U, Wang M, Hu J. Targeting aberrant RAS/RAF/MEK/ERK signaling for cancer therapy. Cells 2020;9:198. doi: 10.3390/cells9010198.
Lopez JS, Banerji U. Combine and conquer: challenges for targeted therapy combinations in early phase trials. Nat Rev Clin Oncol 2017;14:57–66.
Mondal M, Guo J, He P, Zhou D. Recent advances of oncolytic virus in cancer therapy. Hum Vaccin Immunother 2020;16:2389–402.
Zheng M, Huang J, Tong A, Yang H. Oncolytic Viruses for Cancer Therapy: Barriers and Recent Advances. Mol Ther Oncolytics 2019;15:234–47.
Shi T, Song X, Wang Y, Liu F, Wei J. Combining oncolytic viruses with cancer immunotherapy: establishing a new generation of cancer treatment. Front Immunol 2020;11:515617. doi: 10.3389/fimmu.2020.00683.
Wang T, Xu X, Zhang K. Nanotechnology-enabled chemodynamic therapy and immunotherapy. Curr Cancer Drug Targets 2021;21:545–57.
Garmaroudi GA, Karimi F, Naeini LG, Kokabian P, Givtaj N. Therapeutic efficacy of oncolytic viruses in fighting cancer: recent advances and perspective. Oxid Med Cell Longev 2022: 3142306 doi: 10.1155/2022/3142306.
Mukherjee AG, Wanjari UR, Namachivayam A, Murali R, Prabakaran DS, Ganesan R, et al. Role of immune cells and receptors in cancer treatment: an immunotherapeutic approach. Vaccines (Basel) 2022;10:1493 doi: 10.3390/vaccines10091493.
Pan K, Farrukh H, Chittepu VCSR, Xu H, Pan CX, Zhu Z. CAR race to cancer immunotherapy: from CAR T, CAR NK to CAR macrophage therapy. J Exp Clin Cancer Res 2022;41:119. doi: 10.1186/s13046-022-02327-z.
Rosenberg SA, Spiess PJ, Kleiner DE. Antitumor effects in mice of the intravenous injection of attenuated Salmonella typhimurium. J Immunother 2002;25:218-25. doi: 10.1097/01.CJI.0000014623.45316.93.
Rosenberg SA. IL-2: the first effective immunotherapy for human cancer. J Immunol 2014;192:5451-8. doi: 10.4049/jimmunol.1490019.
Qiu Y, Su M, Liu L, Tang Y, Pan Y, Sun J. Clinical application of cytokines in cancer immunotherapy. Drug Des Devel Ther 2021;15:2269–87. doi: 10.2147/DDDT.S308578.
Winter C, Silvestre-Roig C, Ortega-Gomez A, Lemnitzer P, Poelman H, Schumski A, et al. Chrono-pharmacological Targeting of the CCL2-CCR2 Axis Ameliorates Atherosclerosis. Cell Metab 2018;28:175-82.e5. doi: 10.1016/j.cmet.2018.05.002.
Aldinucci D, Borghese C, Casagrande N. The CCL5/CCR5 axis in cancer progression. Cancers (Basel) 2020;12:1765. doi: 10.3390/cancers12071765.
Zeng Z, Lan T, Wei Y, Wei X. CCL5/CCR5 axis in human diseases and related treatments. Genes Dis 2022 Jan;9:12-27. doi: 10.1016/j.gendis.2021.08.004.
Hamid R, Alaziz M, Mahal AS, Ashton AW, Halama N, Jaeger D, et al. The role and therapeutic targeting of CCR5 in breast cancer. Cells 2023;12:2237. doi: 10.3390/cells12182237.
Brandum EP, Jørgensen AS, Rosenkilde MM, Hjortø GM. Dendritic cells and CCR7 expression: an important factor for autoimmune diseases, chronic inflammation, and cancer. Int J Mol Sci 2021;22:8340. doi: 10.3390/ijms22158340.
Yan Y, Chen R, Wang X, Hu K, Huang L, Lu M, et al. CCL19 and CCR7 expression, signaling pathways, and adjuvant functions in viral infection and prevention. Front Cell Dev Biol 2019;7:212. doi: 10.3389/fcell.2019.00212.
Kadomoto S, Izumi K, Mizokami A. The CCL20-CCR6 axis in cancer progression. Int J Mol Sci 2020;21:5186. doi: 10.3390/ijms21155186.
Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M, et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal 2020;18:59. doi: 10.1186/s12964-020-0530-4.
French JA, Koepp M, Naegelin Y, Vigevano F, Auvin S, Rho JM, et al. Clinical studies and anti-inflammatory mechanisms of treatments. Epilepsia 2017;58(Suppl 3):69-82. doi: 10.1111/epi.13779.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.