Impact of Keratoconus on Contrast Sensitivity
DOI:
https://doi.org/10.31584/jhsmr.20241101Keywords:
contrast sensitivity function, functional acuity contrast test, early diagnosis, keratoconus, visual performance, spatial frequencyAbstract
Objective: Keratoconus (KC) disrupts corneal shape, leading to irregular astigmatism and increased higher-order aberrations (HOA), ultimately affecting visual quality. While visual acuity (VA) remains the standard, its limitations in early KC diagnosis are recognized. This study aimed to evaluate the impact of KC on contrast sensitivity function (CSF), a potentially more sensitive measure of visual performance.
Material and Methods: A case-control design compared CSF in KC patients (n=7) to healthy controls (n=16). All subjects achieved the best-corrected visual acuity (BCVA) of 6/9 or better (logMAR ≤0.10). Corneal topography was measured using Tomey TMS-5 to confirm KC diagnosis. CSF was assessed with the Functional Acuity Contrast Test (FACT).
Results: KC eyes exhibited significantly reduced CSF across all spatial frequencies compared to controls (p-value<0.05). Row A of the FACT chart (representing the lowest spatial frequency, 1.5 cpd) demonstrated the most prominent difference (t (21)=-3.073, p-value=0.003).
Conclusion: Our findings reveal that KC patients, despite achieving good BCVA, demonstrate measurable deficits in CSF. This suggests CSF measurement with FACT may be a valuable tool for the early diagnosis and monitoring of KC, potentially offering a more sensitive and comprehensive assessment of visual function compared to BCVA alone.
References
Henriquez MA, Randleman JB. Keratoconus Principles. In: keratoconus: diagnosis and management. Amsterdam: Elsevier; 2023;11-22.
Zhao PF, Li SM, Lu J, Song HM, Zhang J, Zhou YH, et al. Effects of higher-order aberrations on contrast sensitivity in normal eyes of a large myopic population. Int J Ophthalmol 2017;10:1407–11.
Santodomingo-Rubido J, Carracedo G, Suzaki A, Villa-Collar C, Vincent SJ, Wolffsohn JS. Keratoconus: an updated review. Cont Lens Anterior Eye 2022;45:101559. doi: 10.1016/j.clae.2021.101559.
Bennett CR, Bex PJ, Bauer CM, Merabet LB. The assessment of visual function and functional vision. Semin Pediatr Neurol 2019;31:30–40.
Castro-Luna G, Pérez-Rueda A. A predictive model for early diagnosis of keratoconus. BMC Ophthalmol 2020;20:1–9.
Xiong YZ, Kwon MY, Bittner AK, Virgili G, Giacomelli G, Legge GE. Relationship between acuity and contrast sensitivity: differences due to eye disease. Investig Ophthalmol Vis Sci 2020;61:3–5.
Kaur K, Gurnani B. Contrast sensitivity. StatPearls 2021;68-81.
Pondorfer SG, Terheyden JH, Heinemann M, Wintergerst MWM, Holz FG, Finger RP. Association of vision-related quality of life with visual function in age-related macular degeneration. Sci Rep 2019;9:1–7. doi: 10.1038/s41598-019-51769-7.
Neely D, Zarubina A V, Clark ME, Huisingh CE, Jackson GR, Zhang Y, et al. Association between visual function and subretinal drusenoid deposits in normal and early age-related macular degeneration eyes. Retina 2017;37:1329–36.
Havstam Johansson L, Škiljić D, Falk Erhag H, Ahlner F, Pernheim C, Rydberg Sterner T, et al. Vision-related quality of life and visual function in a 70-year-old Swedish population. Acta Ophthalmol 2020;98:521–9.
Onal S, Yenice O, Cakir S, Temel A. FACT contrast sensitivity as a diagnostic tool in glaucoma. Int Ophthalmol 2008;28:407–12.
Applegate RA, Hilmantel G, Howland HC, Tu EY, Starck T, Zayac EJ. Corneal first surface optical aberrations and visual performance. J Refract Surg 2000;16:507–14.
Okamoto C, Okamoto F, Samejima T, Miyata K, Oshika T. Higher-order wavefront aberration and letter-contrast sensitivity in keratoconus. Eye 2008;22:1488–92.
Shneor E, Piñero DP, Doron R. Contrast sensitivity and higher-order aberrations in Keratoconus subjects. Sci Rep 2021;11:1–9. doi: 10.1038/s41598-021-92396-5.
Mohd-Ali B, Abdu M, Yaw CY, Mohidin N. Clinical characteristics of keratoconus patients in Malaysia: A review from a cornea specialist centre. J Optom 2012;5:38–42. doi: 10.1016/j.optom.2012.01.002.
Cole SR, Beck RW, Moke PS, Gal RL, Long DT. The national eye institute visual function questionnaire : experience of the ONTT. Invest Ophthalmol Vis Sci 2000;41:1017–21.
Shandiz JH, Derakhshan A, Daneshyar A, Azimi A, Moghaddam OH, Yekta AA, et al. Effect of cataract type and severity on visual acuity and contrast sensitivity. J Ophthalmic Vis Res 2011;6:26–31.
Pramanik S, Chowdhury S, Ganguly U, Banerjee A, Bhattacharya B, Mondal LK. Visual contrast sensitivity could be an early marker of diabetic retinopathy. Heliyon 2020;6:e05336. doi: 10.1016/j.heliyon.2020.e05336.
Maeda N, Sato S, Watanabe H, Inoue Y, Fujikado T, Shimomura Y, et al. Prediction of letter contrast sensitivity using videokeratographic indices. Am J Ophthalmol 2000;129:759–63.
Maeda N, Fujikado T, Kuroda T, Mihashi T, Hirohara Y, Nishida K, et al. Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus. Ophthalmology 2002;109:1996–2003.
Barbero S, Marcos S, Merayo-Lloves J, Moreno-Barriuso E. Validation of the estimation of corneal aberrations from videokeratography in keratoconus. J Refract Surg 2002;18:263–70.
Fan R, Chan TCY, Prakash G, Jhanji V. Applications of corneal topography and tomography: a review. Clin Exp Ophthalmol 2018;46:133–46.
Xian Y, Sun L, Ye Y, Zhang X, Zhao W, Shen Y, et al. The characteristics of quick contrast sensitivity function in keratoconus and its correlation with corneal topography. Ophthalmol Ther 2023;12:293–305. doi: 10.1007/s40123-022-00609-5.
Bilen NB, Hepsen IF, Arce CG. Correlation between visual function and refractive, correlation topographic, pachymetric and aberrometric data in eyes with keratoconus. Int J Ophthalmol 2016;9:1127–33.
Krumeich JH, Daniel J, Knalle A. Live-epikeratophakia for keratoconus. J Cataract Refract Surg 1998;24:456–63.
Alió JL, Shabayek MH. Corneal higher order aberrations: A method to grade keratoconus. J Refract Surg 2006;22:539–45.
Liduma S, Kruņmiņa G. Visual acuity and contrast sensitivity depending from keratoconus apex position. Proc Latv Acad Sci Sect B Nat Exact, Appl Sci 2017;71:339–46.
Andrade LCO, Souza GS, Lacerda EMCB, Nazima MTST, Rodrigues AR, Otero LM, et al. Influence of retinopathy on the achromatic and chromatic vision of patients with type 2 diabetes. BMC Ophthalmol 2014;14:1–10.
Buhren J, Terzi E, Bach M, Wesemann W, Kohen T. Measuring contrast sensitivity under different lighting conditions: comparison of three tests. Optom Vis Sci 2006;83:290–2.
Strang NC, Atchison DA, Woods RL. Effects of defocus and pupil size on human contrast sensitivity. Ophthalmic Physiol Opt 1999;19:415–26.
Hashemi H, Khabazkhoob M, Jafarzadehpur E, Emamian MH, Shariati M, Fotouhi A. Contrast sensitivity evaluation in a population-based study in Shahroud, Iran. Ophthalmology 2012;119:541–6. doi: 10.1016/j.ophtha.2011.08.030.
Zocher MT, Rozema JJ, Oertel N, Dawczynski J, Wiedemann P, Rauscher FG. Biometry and visual function of a healthy cohort in Leipzig, Germany. BMC Ophthalmol 2016;16:1–10. doi: 10.1186/s12886-016-0232-2.
Karatepe AS, Köse S, Eğrilmez S. Factors affecting contrast sensitivity in healthy individuals: a pilot study. Turkish J Ophthalmol 2017;47:80–4.
Li Z, Hu Y, Yu H, Li J, Yang X. Effect of age and refractive error on quick contrast sensitivity function in Chinese adults: a pilot study. Eye 2021;35:966–72. doi: 10.1038/s41433-020-1009-7.
Beazley L, Illingworth D, Jahn A, Greer D. Contrast sensitivity in children and adults. Br J Ophthalmol 1980;64:863–6.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.