Diabetes Mellitus and COVID-19: Possible Interactions and Mechanisms in Comorbid Patients

Authors

  • Stanley I.R. Okoduwa Department of Biochemistry, School of Basic Medical Sciences, Babcock University, Ilishan-Remo 121103, Nigeria. Infohealth Awareness Group, SIRONigeria Global Limited, Abuja 910001, Nigeria.
  • Daniel H. Mhya Department of Medical Biochemistry, Abubakar Tafawa Balewa University, Bauchi 740102, Nigeria.
  • Idongesit A. Enang Industrial and Environmental Pollution Department, National Research Institute for Chemical Technology, Zaria 810107, Nigeria.
  • Akinbobola O. Salawu South-West Liaison Office, Nigerian Institute of Leather and Science Technology, Ilara-Remo 121104, Nigeria.

DOI:

https://doi.org/10.31584/jhsmr.2022904

Keywords:

COVID-19, diabetes mellitus, hyperglycaemia, SARS-CoV-2

Abstract

Beginning in December 2019 and still ongoing, coronavirus disease 2019 (COVID-19) infections have posed a public health challenge worldwide. There have been reports of diabetes mellitus (DM) as one of the most prevalent comorbidities in patients with COVID-19. Although the interactions and possible mechanisms of this association have not been fully established, the existence of DM is believed to aggravate the adverse effects of COVID-19 infection. Hence, the need for this paper. Findings from other studies have shown different possible mechanisms of how COVID-19 and DM aggravate the severity of each other. Among the hypothetical mechanisms reported between COVID-19 and DM in this paper are: COVID-19 causes complications of DM through the following: (1) Destruction of β-cells in the pancreas by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. (2) Cytokine storm generation which mediates tissue inflammation resulting in organ damage and (3) The use of corticosteroid drugs which have been found to be highly diabetogenic. Similarly, DM facilitates internalizing of SARS-CoV-2 symptoms through increasing expression of angiotensin-converting enzyme 2 (ACE2) and the furin protein, viral load, entrance and replication of SARS-CoV-2, glycosylation, and compromising of the immune response that worsens COVID-19. Having a clear understanding of the biochemical mechanisms of interactions between COVID-19 and DM may be useful for future research of agents targeted as therapeutic remedies for managing patients with diabetes infected with COVID-19 and vice versa.

References

Mahase E. Coronavirus: covid-19 has killed more people than SARS and MERS combined, despite lower case fatality rate. BMJ 2020;368:m641.

World Health Organization. WHO Director-General’s opening remarks at the media briefing on COVID-19 11 March 2020 [homepage on the Internet]. Geneva: WHO; 2020 [cited 2022 Jul 25]. Available from: https://www.who.int/dg/speeches/ detail/who-directorgeneral-s-opening-remarks-at-the-media briefing-oncovid-19—11-march-2020

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2022;395:497-506.

Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus– infected pneumonia. N Engl J Med 2020;382:1199–207.

Nigeria Center for Disease Control. An update of COVID-19 outbreak in Nigeria [homepage on the Internet]. Abuja: Nigeria Center for Disease Control [cited 2022 Jul 29]. Available from: https://ncdc.gov.ng/

World Health Organization. Responding to community spread of COVID-19. reference WHO/COVID-19/community_ transmission/2022.1 [homepage on the Internet]. Geneva: WHO [cited 2022 Jun 7]. Available from: https://covid19.who.int/

Gupta A, Madhavan MV, Sehgal K, Nair N, Mahajan S, Sehrawat TS. Extrapulmonary manifestations of COVID-19. Nat Med 2020;26:1017–32.

Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. J Am Med Assoc 2020;323:1061-9.

Zhang C, Shi L, Wang FS. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol 2020;5:428-30.

Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054-62.

Li G, Chen Z, Lv T, Li H, Chang D, Lu J. Diabetes mellitus and COVID-19: associations and possible mechanisms. Int J Endocrinol 2021;1-10.

World Health Organization. COVID-19 more deadly in Africans with diabetes [homepage on the Internet]. Geneva: WHO [cited 2021 Nov 11]. Available from: https://www.afro.who.int/news/ covid-19-more-deadly-africans-diabetes

Okoduwa SIR, Umar IA, Ibrahim S, Bello F, Habila N. Age-dependent alteration of antioxidant defense system in hypertensive and type-2 diabetes patients. J Diabetes Metab Disord 2015;14:1-9.

Okoduwa SIR, Umar IA, Ibrahim S, Bello F, Ndidi US. Socio-economic status of patients with type-2 diabetes and hypertension attending the Ahmadu Bello University Teaching Hospital, Zaria, North-West Nigeria. Glob J Health Sci 2015; 7:280-7.

Iacobellis G. COVID-19 and diabetes: can DPP4 inhibition play a role?. Diabetes Res Clin Pract 2020;162:108125.

Kumar-Nathella P, Babu S. Influence of diabetes mellitus on immunity to human tuberculosis. Immunol 2017;152:13-24.

Igiri BE, Tagang JI, Okoduwa SIR, Adeyi AO, Okeh A. An integrative review of therapeutic footwear for neuropathic foot due to diabetes mellitus. Metab Syndr Clin Res Rev 2019;13:913-23.

Xu M, Liu PP, Li H. Innate immune signaling and its role in metabolic and cardiovascular diseases. Physiol Rev 2019;99: 893-948.

Remuzzi A, Remuzzi G. COVID-19 and Italy: what next? Lancet 2020;395:1225-8.

Memish ZA, Perlman S, Van-Kerkhove MD, Zumla A. Middle East respiratory syndrome. Lancet 2020;395:1063-77.

Guo W, Li M, Dong Y, Zhou H, Zhang Z, Tian C, et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev 2020;36. doi: 10.1002/dmrr.3319.

Zhu L, Zhi-Gang S, Cheng X, Guo J, Zhang BH, Li H. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab 2020;S1550–4131.

Rojas MA, Zhang W, Xu Z, Nguyen DT, Caldwell RW, Caldwell RB. Interleukin 6 has a critical role in diabetes-induced retinal vascular inflammation and permeability. Invest Ophthalmol Vis Sci 2011;52:1003.

Kulcsar KA, Coleman CM, Beck SE, Frieman MB. Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS-CoV infection. JCI Insight 2019;4:131774.

Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol 2010;47:193-9.

Yang JK, Feng Y, Yuan MY, Yuan SY, Fu HJ, Wu BY, et al. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet Med 2006;23:623-8.

Singh AK, Gupta R, Ghosh A, Misra A. Diabetes in COVID-19: prevalence, pathophysiology, prognosis and practical considerations. Metab Syndr Clin Res Rev 2020;14:303-10.

Badawi A, Ryoo SG. Prevalence of diabetes in the 2009 influenza A (H1N1) and the Middle East respiratory syndrome coronavirus: a systematic review and meta-analysis. J Public Health Res 2016;5:733-40.

Forbes A, Murrells T, Mulnier H, Sinclair AJ. Mean HbA1c, HbA1c variability, and mortality in people with diabetes aged 70 years and older: a retrospective cohort study. Lancet Diabetes Endocrinol 2018;6:476-86.

Smilowitz NR, Kunichoff D, Garshick M, Shah B, Pillinger M, Hochman JS, et al. C-reactive protein and clinical outcomes in patients with COVID-19. Eur Heart J 2021;42:2270–9.

Vasileva D, Badawi A. C-reactive protein as a biomarker of severe H1N1 influenza. Inflamm Res 2019;68:39–46.

Zhang ZL, Hou YL, Li DT, Li FZ. Laboratory findings of COVID-19: a systematic Review and meta-analysis. Scand J Clin Lab Invest 2020;80:441–7.

Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin converting enzyme 2 (ACE2) as a SARS-CoV-2 Receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 2020;46:586–90.

Farhana A, Lappin SL. Biochemistry, lactate dehydrogenase (LDH). Stat Pearls; 2020;p491-68.

Morassi M, Bagatto D, Cobelli M, D’Agostini S, Gigli GL, Bnà C, et al. Stroke in patients with SARS-CoV-2 infection: case series. J Neurol 2020;267:2185-92.

Paces J, Strizova Z, Daniel SMRZ, Cerny J. COVID-19 and the immune system. Physiol Res 2020;69:379-88.

Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm’ in COVID-19. J Infect 2020;80:607–13.

Sada K, Nishikawa T, Kukidome D, Yoshinaga T, Kajihara N, Sonoda K, et al. Hyperglycemia induces cellular hypoxia through production of mitochondrial ROS followed by suppression of aquaporin-1. PLoS One 2016;11:e0158619.

Naicker S, Yang CW, Hwang SJ, Liu BC, Chen JH, Jha V. The novel coronavirus 2019 epidemic and kidneys. Kidney Int 2020;97:824-8.

Panigrahy D, Gilligan MM, Huang S, Gartung A, Cortés-Puch I, Sime PJ, et al. Inflammation resolution: a dual-pronged approach to averting cytokine storms in COVID-19? Cancer Metastasis Rev 2020;39:337-40.

Chien JY, Hsueh PR, Cheng WC, Yu CJ, Yang PC. Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome. Respirology 2006;11:715-22.

Chu H, Zhou J, Wong BHY, Li C, Chan JFW, Cheng ZS, et al. Middle East respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways. J Infect Dis 2016;213:904-14.

Boddu SK, Aurangabadkar G, Kuchay MS. New onset diabetes, type 1 diabetes and COVID-19. Metab Syndr Clin Res Rev 2020;14:2211-7.

Xie Y, Al-Aly Z. Risks and burdens of incident diabetes in long COVID: a cohort study. Lancet Diabetes Endocrinol 2022;10:311–21.

Unnikrishnan R, Misra A. Diabetes and COVID19: a bidirectional relationship. Nutr Diabetes 2021;11:1-5.

Wang F, Wang H, Fan J, Zhang Y, Wang H, Zhao Q. Pancreatic injury patterns in patients with COVID-19 pneumonia. Gastroenterol 2020;159:367–37.

Lin CW, Lin KH, Hsieh TH, Shiu SY, Li JY. Severe acute respiratory syndrome coronavirus 3C-like protease-induced apoptosis. FEMS Immunol Med Microbiol 2006;46:375-80.

Delgado-Roche L, Mesta F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Arch Med Res 2020;51:384-7.

Smith JT, Willey NJ, Hancock JT. Low dose ionizing radiation produces too few reactive oxygen species to directly affect antioxidant concentrations in cells. Biol Lett 2012;8:594-7.

Santos AF, Povoa P, Paixao P, Mendonça A, Taborda-Barata L. Changes in glycolytic pathway in SARS-CoV 2 infection and their importance in understanding the severity of COVID-19. Front Chem 2021;9:685196.

American Diabetes Association, 2022. Introduction: standards of medical care in diabetes—2022. Diabetes Care 2022;45(Suppl 1):S1-2.

Yang P, Feng J, Peng Q, Liu X, Fan Z. Advanced glycation end products: potential mechanism and therapeutic target in cardiovascular complications under diabetes. Oxid Med Cell Longev 2019;9570616.

Lambert DW, Yarski M, Warner FJ, Thornhill P, Parkin ET, Smith AI, et al. Tumor necrosis factor-α convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin converting enzyme-2 (ACE2). J Biol Chem 2005;280:30113-9.

Baillet A, Hograindleur MA, El-Benna J, Grichine A, Berthier S, Morel F, et al. Unexpected function of the phagocyte NADPH oxidase in supporting hyperglycolysis in stimulated Neutrophils: Key Role of 6phosphofructo-2-kinase. FASEB J 2017;31:663–73.

Altenhofer S, Radermacher KA, Kleikers PWM, Wingler K, Schmidt HHW. Evolution of NADPH oxidase inhibitors: selectivity and mechanisms for target engagement. Antioxid Redox Sign 2015;23:406-27.

Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflam-matory responses and inflammation-associated diseases in organs. Oncotarget 2018;9:7204-18.

Sindona C, Schepici G, Contestabile V, Bramanti P, Mazzon E. NOX2 Activation in COVID-19: possible implications for neurodegenerative diseases. Medicina 2021;57:604.

Vamvini M, Lioutas VA, Middelbeek RJW. Characteristics and diabetes control in adults with type 1 diabetes admitted with COVID-19 infection. Diabetes Care 2020;43:e120-2.

Ebekozien OA, Noor N, Gallagher MP, Alonso GT. Type 1 diabetes and COVID19: preliminary findings from a multicenter surveillance study in the U.S. Diabetes Care 2020;43:e83-5.

Reddy PK, Kuchay MS, Mehta Y, Mishra SK. Diabetic ketoacidosis precipitated by COVID-19: a report of two cases and review of literature. Diabetes Metab Syndr 2020;14:1459–62.

Bornstein SR, Dalan R, Hopkins D, Mingrone G, Boehm BO. Endocrine and metabolic link to coronavirus infection. Nat Rev Endocrinol 2020;16:297-8.

Carlsson PO, Berne C, Jansson L. Angiotensin II and the endocrine pancreas: effects on islet blood flow and insulin secretion in rats. Diabetologia 1998;41:127-33.

Chee YJ, Ng SJH, Yeoh E. Diabetic ketoacidosis precipitated by Covid-19 in a patient with newly diagnosed diabetes mellitus. Diabetes Res Clin Pract 2020;164:108166.

Fan Z, Chen L, Li J, Cheng X, Yang J, Tian C, et al. Clinical features of COVID-19-related liver functional abnormality. Clin Gastroenterol Hepatol 2020;18:1561-6.

Bangash MN, Patel J, Parekh D. COVID-19 and the liver: little cause for concern. Lancet Gastroenterol Hepatol 2020;5:529-38.

Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, et al. Recovery collaborative group. dexamethasone in hospitalized patients with covid-19-preliminary report. N Engl J Med 2020;384:693–704.

Alessi J, De Oliveira GB, Schaan BD, Telo GH. Dexamethasone in the era of COVID-19: friend or foe? An essay on the effects of dexamethasone and the potential risks of its inadvertent use in patients with diabetes. Diabetol Metab Syndr 2020;12:1-11.

Cassuto H, Kochan K, Chakravarty K, Cohen H, Blum B, Olswang Y, et al. Glucocorticoids regulate transcription of the gene for phosphoenolpyruvate carboxykinase in the liver via an extended glucocorticoid regulatory unit. J Biol Chem 2005;280:33873-84.

Pierpaolo DF, Gabriele P, Elisabetta T, Ventura MM, Carmine F, Faust S, et al. Contribution of cortisol to glucose counter regulation in humans. Am J Physiol - Endocrinol Metab 1989; 257:E35-42.

Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 2020;395:473-5.

Alhazzani W, Evans L, Alshamsi F, Møller MH, Ostermann M, Prescott HC, et al. Surviving sepsis campaign guidelines on the management of adults with coronavirus disease 2019 (COVID-19) in the ICU: first update. Crit Care Med 2021;49: e219-34.

Onyemachi DI, Okoduwa SIR. Impact of Online media in management of burden and psychological trauma associated with COVID-19 pandemic and spread of false news. Inf Technol J 2022;24:14-25

Jayawardena R, Misra A. Balanced diet is a major casualty in COVID-19. Diabetes Metab Syndr 2020;14:1085-6.

Ghosal S, Sinha B, Majumder M, Misra A. Estimation of effects of nationwide lockdown for containing coronavirus infection on worsening of glycosylated haemoglobin and increase in diabetes-related complications: a simulation model using multivariate regression analysis. Metab Syndr Clin Res Rev 2020;14:319-23.

Raman R, Rajalakshmi R, Surya J, Ramakrishnan R, Sivaprasad S, Conroy D, et al. Impact on health and provision of healthcare services during the COVID-19 lockdown in India: a multicentre cross-sectional study. BMJ Open 2021;11:e043590.

Tao J, Gao L, Liu Q, Jiaojiao KD, Peng HX, Yang Y et al. Factors contributing to glycemic control in diabetes mellitus patients complying with home quarantine during the coronavirus disease 2019 (COVID-19) epidemic. Diabetes Res Clin Pract 2020;170:108514.

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181:271-80.

Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020;395:565-74.

Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol 2022;23:3-20.

Delmastro MM, Piganelli J D. Oxidative stress and redox modulation potential in type 1 diabetes. Clin Dev Immunol 2011; 1: 9764-9774.

Liu F, Long X, Zhang B, Zhang W, Chen X, Zhang Z. ACE2 expression in pancreas may cause pancreatic damage after SARS-CoV-2 infection. Clin Gastroenterol Hepatol 2020;18: 2128-30.

Candido R, Jandeleit-Dahm KA, Cao Z, Nesteroff SP, Burns WC, Twigg SM, et al. Prevention of accelerated atherosclerosis by angiotensin-converting enzyme inhibition in diabetic Apo lipoprotein E–deficient mice. Circ 2002;106:246-53.

Tikellis C, Thomas MC. Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. Int J Pept 2012;256-94.

Li XC, Zhang J. Zhuo JL. The vasoprotective axes of the renin angiotensin system: physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res 2017;125:21-38.

Sen S, Chakraborty R, Kalita P, Pathak MP. Diabetes mellitus and COVID-19: understanding the association in light of current evidence. World J Clin Cases 2021;9:8327.

Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med 2020;8:e21.

Hong KW, Cheong HJ, Choi WS, Lee J, Wie SH, Baek JH, et al. Clinical courses and outcomes of hospitalized adult patients with seasonal influenza in Korea, 2011–2012: Hospital-based Influenza Morbidity & Mortality (HIMM) surveillance. J Infect Chemother 2014;20:9-14.

Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E. The spike glycoprotein of the new coronavirus 2019- nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antivir Res 2020;176:104742.

Lontchi-Yimagou E, Feutseu C, Kenmoe S, Zune ALD, Ekali SFK, Nguewa JL, et al. Non-autoimmune diabetes mellitus and the risk of virus infections: a systematic review and meta-analysis of case-control and cohort studies. Sci Rep 2021;11:8968.

Philips BJ, Meguer JX, Redman J, Baker EH. Factors determin ing the appearance of glucose in upper and lower respiratory tract secretions. Intensive Care Med 2003;29:2204-10.

Gill SK, Hui K, Farne H, Garnett JP, Baines DL, Moore LS, et al. Increased airway glucose increases airway bacterial load in hyperglycaemia. Sci Rep 2016;6:1-10.

Codo AC, Davanzo GG, de-Brito Monteiro L, de-Souza GF, Muraro SP, Virgilio-da-Silva JV, et al. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis. Cell Metab 2020;32:437-46.

Fernandez C, Rysä J, Almgren P, Nilsson J, Engström G, Orho-Melander M, et al. Plasma levels of the proprotein convertase furin and incidence of diabetes and mortality. J Intern Med 2018;284:377-87.

Morey M, O’Gaora P, Pandit A, Hélary C. Hyperglycemia acts in synergy with hypoxia to maintain the pro-inflammatory phenotype of macrophages. PLoS One 2019;14:e0220577.

Pizzato M, Baraldi C, Boscato Sopetto G, Finozzi D, Gentile C, Gentile MD, et al. SARS-CoV-2 and the host cell: a tale of interactions. Front Virol 2022;1:815388.

Ji HL, Zhao R, Matalon S, Matthay MA. Elevated plasmin (ogen) as a common risk factor for COVID-19 susceptibility. Physiol Rev 2020;100:1065-75.

Bode B, Garrett V, Messler J, McFarland R, Crowe J, Booth R, et al. Glycemic characteristics and clinical outcomes of COVID-19 patients hospitalized in the United States. J Diab Sci Technol 2020;14:813-21.

Graves DT, Kayal RA. Diabetic complications and dysregulated innate immunity. Front Biosci: J Virtual Library 2008;13,1227-39.

Matuschik L, Riabov V, Schmuttermaier C, Sevastyanova T, Weiss C, Klüter H, et al. Hyperglycemia induces inflammatory response of human macrophages to CD163-mediated scavenging of hemoglobin-haptoglobin complexes. Int J Mol Science 2022;23:1385.

Frieman M, Heise M, Baric R. SARS coronavirus and innate immunity. Virus Res 2008;133:101-12.

Muniyappa R, Gubbi S. COVID-19 pandemic, coronaviruses, and diabetes mellitus. Am J Physiol-Endocrinol Metabol 2020;318:E736-41.

Bikdeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I, Driggin E, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up. Journal of the American College of Cardiology 2020;75:2950–73

Becker RC. COVID-19-associated vasculitis and vasculopath. J Thromb Thrombolysis 2020;50:499–511.

Kaur R, Kaur M, Singh J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc Diabetol 2018;17:121.

Tousoulis D, Papageorgiou N, Androulakis E, Siasos G, Latsios G, Tentolouris K, et al. Diabetes mellitus-associated vascular impairment. J Am Coll Cardiol 2013;62:667–76.

Pu LJ, Shen Y, Lu L, Zhang RY, Zhang Q, Shen WF. Increased blood glycohemoglobin A1c levels lead to overestimation of arterial oxygen saturation by pulse oximetry in patients with type 2 diabetes. Cardiovasc Diabetol 2012;11:110.

De Rosa MC, Sanna MT, Messana I, Castagnola M, Galtieri A, Tellone E, et al. Glycated human haemoglobin (HbA1c): functional characteristics and molecular modeling studies. Biophys Chem 199;72:323–35.

Samaja M, Melotti D, Carenini A, Pozza G. Glycosylated haemoglobins and the oxygen affinity of whole blood. Diabetologia 1982;23:399–402.

Lal S, Szwergold BS, Taylor AH, Randall WC, Kappler F, Brown TR. Production of fructose and fructose-3-phosphate in maturing rat lenses. Invest Ophthalmol Vis Sci 1995;36:969-73.

Bose T, Chakraborti AS. Fructose-induced structural and functional modifications of haemoglobin: implication for oxidative stress in diabetes mellitus. Biochimica et Biophysica Acta (BBA)-General Subjects 2008;1780:800-8.

Wenzhong L, Hualan L, Liu CW. COVID-19: attacks the 1-beta chain of haemoglobin to disrupt respiratory function and escape immunity. ChemRxiv. Cambridge: Cambridge Open Engage; 2022.

Wu X, Li C, Chen S, Zhang X, Wang F, Shi T, et al. Association of body mass index with severity and mortality of COVID-19 pneumonia: a two-center, retrospective cohort study from Wuhan, China. Aging (Albany NY) 2021;13:7767.

Jafar N, Edriss H, Nugent K. The effect of short-term hyperglycaemia on the innate immune system. Am J Med Sci 2016;351:201-11.

Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M, et al. Inflammatory cytokine concentrations are acutely increased by hyperglycaemia in humans: role of oxidative stress. Circ 2002;106:2067-72.

Geerlings SE, Hoepelman AI. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol Med Microbiol 1999;26:259-65.

Amin-Ardestani A, Azizi Z. Targeting glucose metabolism for treatment of COVID-19. Signal Transduct Target Ther 2021;6:112.

Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol 2020;20:355-62.

Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020;395:1033-4.

Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Patho logical findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020;8:420-2.

Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol 2020;11:827.

Bryce C, Grimes Z, Pujadas E, Ahuja S, Beasley MB, Albrecht R, et al. Pathophysiology of SARS-CoV-2: the Mount Sinai COVID-19 autopsy experience. Mod Pathol 2021;34:1456-67.

Downloads

Published

2023-04-21

How to Cite

1.
Okoduwa SI, Mhya DH, Enang IA, Salawu AO. Diabetes Mellitus and COVID-19: Possible Interactions and Mechanisms in Comorbid Patients. J Health Sci Med Res [Internet]. 2023 Apr. 21 [cited 2024 Jul. 18];41(2):1-19. Available from: https://he01.tci-thaijo.org/index.php/jhsmr/article/view/263135

Issue

Section

Review Article