Phenotypic variation of Streptococcus Suis Serotype 2 isolated from Northern Thai patients characterized by survival in human blood and serum

Main Article Content

Jeeraphong Khikhuntod
Kwanjit Duangsonk
Manu Deeudom
Hathairat Thananchai

Abstract

Introduction: Streptococcus suis is one of the most important zoonotic pathogens worldwide. It can cause a wide range of diseases both in pigs and human including meningitis, endocarditis, arthritis and pneumonia. Although several virulence-associated factors have been characterized, specific virulence factors were not clearly defined. Moreover, the genotype of virulence-associated genes involved in virulence of S. suis was uncertain and varied between geographic areas.

Objective: To study phenotype of S. suis serotype 2 strains by human whole blood and serum bactericidal assays.

Materials and materials:  Nine clinical S. suis serotype 2 strains isolated from Northern Thai infected individuals and one isolated from a healthy pig were used in this study. The viability of S. suis strains was determined after incubation in human whole blood or fresh serum. 

Results: We found that three clinical strains and a pig strain resisted human blood after a four-hour incubation with survival rate ranging from 93-208%. In contrast, growth of the other six clinical strains was inhibited with a survival rate ranging from undetectable to 59%.  Surprisingly, we found that five S. suis strains were killed in fresh serum after one hour of exposure with survival rates ranging from 37.12-64.31% and the survival of those strains were restored when incubated with heat-inactivated serum. Additionally, the survival of S. suis in human blood or serum was not associated with their virulence-associated genotypes or symptoms of the patients.
 
Conclusion: Our results suggested that survival of S. suis in human blood and serum was strain dependent. The only three virulence-associated genes (sly, epf, and mrp) could not determine the phenotypic character of S. suis particularly survival in human blood or serum. Since some S. suis strains loss their viability in human serum, further investigation of substances in serum involved in S. suis killing is warranted.


 


Bull Chiang Mai Assoc Med Sci 2016; 49(2): 377-388. Doi: 10.14456/jams.2016.31


 

Article Details

How to Cite
Khikhuntod, J., Duangsonk, K., Deeudom, M., & Thananchai, H. (2016). Phenotypic variation of Streptococcus Suis Serotype 2 isolated from Northern Thai patients characterized by survival in human blood and serum. Journal of Associated Medical Sciences, 49(3), 377. Retrieved from https://he01.tci-thaijo.org/index.php/bulletinAMS/article/view/69229
Section
Research Articles

References

1. Segura M, Vanier G, Al-Numani D, Lacouture S, Olivier M, Gottschalk M. Proinflammatory cytokine and chemokine modulation by Streptococcus suis in a whole-blood culture system. FEMS Immunol Med Microbiol 2006; 47(1): 92-106.

2. Goyette-Desjardins G, Auger JP, Xu J, Segura M, Gottschalk M. Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. Emerg Microbes Infect 2014; 3(6): e45.

3. Phuapradit P, Boongird P, Boonyakarnkul S, Niramarnsakul S, Ponglikitmongkol S, Vorachit M, et al. Meningitis caused by Streptococcus suis. Intern Med 1987; 3: 120–2.

4. Leelarasamee A, Nilakul C, Tien-Grim S, Srifuengfung S, Susaengrat W. Streptococcus suis toxic-shock syndrome and meningitis. J Med Assoc Thai 1997; 80(1): 63-8.

5. Thailand Ministry of Public Health Bureau of Epidemiology 2015. Laboratory surveillance of Streptococcus suis. Available from: http://www.boe.moph.go.th/boedb/surdata/disease.php?ds=82. Accessed 5 Febuary 2016

6. Wisselink HJ, Smith HE, Stockhofe-Zurwieden N, Peperkamp K, Vecht U. Distribution of capsular types and production of muramidase-released protein (MRP) and extracellular factor (EF) of Streptococcus suis strains isolated from diseased pigs in seven European countries. Vet Microbiol 2000; 74(3): 237-48.

7. Normile D. Infectious diseases. WHO probes deadliness of China’s pig-borne disease. Science 2005; 309(5739): 1308-9.

8. Ngo TH, Tran TB, Tran TT, Nguyen VD, Campbell J, Pham HA, et al. Slaughterhouse pigs are a major reservoir of Streptococcus suis serotype 2 capable of causing human infection in southern Vietnam. PLoS One 2011; 6(3): e17943.

9. Fittipaldi N, Segura M, Grenier D, Gottschalk M. Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent Streptococcus suis. Future Microbiol 2012; 7(2): 259-79.

10. Chabot-Roy G, Willson P, Segura M, Lacouture S, Gottschalk M. Phagocytosis and killing of Streptococcus suis by porcine neutrophils. Microb Pathog 2006; 41(1): 21-32.

11. Houde M, Gottschalk M, Gagnon F, Van Calsteren MR, Segura M. Streptococcus suis capsular polysaccharide inhibits phagocytosis through destabilization of lipid microdomains and prevents lactosylceramide-dependent recognition. Infect Immun 2012; 80(2): 506-17.

12. Lun S, Perez-Casal J, Connor W, Willson PJ. Role of suilysin in pathogenesis of Streptococcus suis capsular serotype 2. Microb Pathog 2003; 34(1): 27-37.

13. Pian Y, Wang P, Liu P, Zheng Y, Zhu L, Wang H, et al. Proteomics identification of novel fibrinogen-binding proteins of Streptococcus suis contributing to antiphagocytosis. Front Cell Infect Microbiol 2015; 5:19.

14. Berthelot-Hérault F, Gottschalk M, Morvan H, Kobisch M. Dilemma of virulence of Streptococcus suis: Canadian isolate 89-1591 characterized as a virulent strain using a standardized experimental model in pigs. Can J Vet Res 2005; 69(3): 236-40.

15. Domínguez-Punaro MC, Segura M, Plante MM, Lacouture S, Rivest S, Gottschalk M. Streptococcus suis serotype 2, an important swine and human pathogen, induces strong systemic and cerebral inflammatory responses in a mouse model of infection. J Immunol 2007; 179(3): 1842-54.

16. King SJ, Leigh JA, Heath PJ, Luque I, Tarradas C, Dowson CG, et al. Development of a multilocus sequence typing scheme for the pig pathogen Streptococcus suis: identification of virulent clones and potential capsular serotype exchange. J Clin Microbiol 2002; 40: 3671–80.

17. Yu H, Jing H, Chen Z, Zheng H, Zhu X, Wang H, et al. Human Streptococcus suis outbreak, Sichuan, China. Emerg Infect Dis 2006; 12: 914-20.

18. Mai NT, Hoa NT, Nga TV, Linh le D, Chau TT, Sinh DX, et al. Streptococcus suis meningitis in adults in Vietnam. Clin Infect Dis 2008; 46(5): 659-67.

19. Kerdsin A, Dejsirilert S, Puangpatra P, Sripakdee S, Chumla K, Boonkerd N, et al. Genotypic profile of Streptococcus suis serotype 2 and clinical features of infection in humans, Thailand. Emerg Infect Dis 2011; 17: 835-42.

20. Takamatsu D, Wongsawan K, Osaki M, Nishino H, Ishiji T, Tharavichitkul P. Streptococcus suis in humans, Thailand. Emerg Infect Dis 2008; 14(1): 181-3.

21. Deeudom M, Huston W, Moir JW. Lipid-modified azurin of Neisseria meningitidis is a copper protein localized on the outer membrane surface and not regulated by FNR. Antonie Van Leeuwenhoek 2015; 107(4): 1107-16.

22. Vecht U, Wisselink HJ, van Dijk JE, Smith HE. Virulence of Streptococcus suis type 2 strains in newborn germfree pigs depends on phenotype. Infect Immun 1992; 60: 550–6.

23. Gottschalk M, Lebrun A, Wisselink H, Dubreuil JD, Smith H, Vecht U. Production of virulence-related proteins by Canadian strains of Streptococcus suis capsular type 2. Can J Vet Res 1998; 62: 75–9.

24. Baums CG and Valentin-Weigand P. Surface-associated and secreted factors of Streptococcus suis in epidemiology, pathogenesis and vaccine development. Anim Health Res Rev 2009; 10: 65-83.

25. Segura M, Gottschalk M, Olivier M. Encapsulated Streptococcus suis inhibits activation of signaling pathways involved in phagocytosis. Infect. Immun 2004; 72: 5322–30.

26. Lecours MP, Segura M, Lachance C, Mussa T, Surprenant C, Montoya M, et al. Characterization of porcine dendritic cell response to Streptococcus suis. Vet Res 2011; 42: 72.

27. Eisenberg T, Hudemann C, Hossain HM, Hewer A, Tello K, Bandorski D, et al. Characterization of Five Zoonotic Streptococcus suis Strains from Germany, Including One Isolate from a Recent Fatal Case of Streptococcal Toxic Shock-Like Syndrome in a Hunter. J Clin Microbiol 2015; 53: 3912–5.

28. Wise AJ, Hogan JS, Cannon VB, Smith KL. Phagocytosis and serum susceptibility of Escherichia coli cultured in iron-deplete and iron-replete media. J Dairy Sci 2002; 85(6): 1454-9.

29. Segura M, Gottschalk M. Extracellular virulence factors of streptococci associated with animal diseases. Front Biosci 2004; 9: 1157–88.

30. Lecours MP, Gottschalk M, Houde M, Lemire P, Fittipaldi N, Segura M. Critical Role for Streptococcus suis Cell Wall Modifications and Suilysin in Resistance to Complement-Dependent Killing by Dendritic Cells. J Infect Dis 2011; 204: 919–29.

31. He Z, Pian Y, Ren Z, Bi L, Yuan Y, Zheng Y. Increased production of suilysin contributes to invasive infection of the Streptococcus suis strain 05ZYH33. Mol. Med. Report 2014; 10: 2819-26.

32. Vecht U, Wisselink HJ, Stockhofe-Zurwieden N, Smith HE. Characterization of virulence of the Streptococcus suis serotype 2 reference strain Henrichsen S 735 in newborn gnotobiotic pigs. Vet Microbiol 1996; 51(1-2): 125-36.

33. Fulde M, Willenborg J, Huber C, Hitzmann A, Willms D, Seitz M, et al. The arginine-ornithine antiporter ArcD contributes to biological fitness of Streptococcus suis. Front Cell Infect Microbiol 2014; 4: 107.

34. de Buhr N, Neumann A, Jerjomiceva N, von Köckritz-Blickwede M, Baums CG. Streptococcus suis DNase SsnA contributes to degradation of neutrophil extracellular traps (NETs) and evasion of NET-mediated antimicrobial activity. Microbiology 2014; 160(Pt 2): 385-95.

35. Bonifait L, Vaillancourt K, Gottschalk M, Frenette M, Grenier D. Purification and characterization of the subtilisin-like protease of Streptococcus suis that contributes to its virulence. Vet. Microbiol 2011; 148: 333–40.

36. Fang L, Shen H, Tang Y, Fang W. Superoxide dismutase of Streptococcus suis serotype 2 plays a role in anti-autophagic response by scavenging reactive oxygen species in infected macrophages. Vet. Microbiol 2015; 176: 328–36.

37. Tillett WS. The streptococcidal action of the acute phase serum from patients. In Streptococcal Infections. Ed. Columbia Univ. Press, New York, 1954; pp 109-19.

38. Myrvik QN, Weiser RS. Studies on antibacterial factors in mammalian tissues and fluids. I. A serum bactericidin for Bacillus subtilis. J Immunol 1955; 74(1): 9-16.

39. Sarma JV, Ward PA. The complement system. Cell Tissue Res 2011; 343(1): 227-35.

40. Reddy KV, Yedery RD, Aranha C. Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 2004; 24(6): 536-47

41. Nash JA, Ballard TN, Weaver TE, Akinbi HT. The peptidoglycan-degrading property of lysozyme is not required for bactericidal activity in vivo. J Immunol 2006; 177(1): 519-26.

42. Rooijakkers SH, Rasmussen SL, McGillivray SM, Bartnikas TB, Mason AB, Friedlander AM, et al. Human transferrin confers serum resistance against Bacillus anthracis. J Biol Chem 2010; 285(36): 27609-13.

43. Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 2003; 55(1): 27-55.

44. Barnes AC, Young FM, Horne MT, Ellis AE. Streptococcus iniae: serological differences, presence of capsule and resistance to immune serum killing. Dis Aquat Organ 2003; 53(3): 241-7.

45. Berends ET, Mohan S, Miellet WR, Ruyken M, Rooijakkers SH. Contribution of the complement Membrane Attack Complex to the bactericidal activity of human serum. Mol Immunol 2015; 65(2): 328-35.