A Review Article: Designing Grid Displays in AAC Systems to Enhance Accuracy and Reduce Latency in Symbol Searching

Main Article Content

Wansiya Kamonsitichai
Samuel E. Weinstein

Abstract

Augmentative and Alternative Communication (AAC) systems support individuals
with complex communication needs. This review article examines factors influencing
the design of grid displays in AAC systems to enhance symbol searching accuracy
and reduce latency. Four key areas are identified: the organization of symbols, color
cues, visual crowding, and symbol location. Effective symbol organization, such as
semantic-syntactic and schematic displays, can facilitate efficient communication,
while color cues may improve visual attention and memory recall. Managing visual
crowding and strategically placing symbols based on visual field biases and motor
control abilities are also crucial. By optimizing these elements, speech-language
pathologists can develop AAC displays that improve user communication outcomes.
The findings provide guidelines for designing user-centered AAC systems tailored
to individual cognitive, motor, and sensory needs.

Article Details

How to Cite
Kamonsitichai, W., & Weinstein, S. E. . (2024). A Review Article: Designing Grid Displays in AAC Systems to Enhance Accuracy and Reduce Latency in Symbol Searching. Journal of Associated Medical Sciences, 58(1), 107–115. Retrieved from https://he01.tci-thaijo.org/index.php/bulletinAMS/article/view/273718
Section
Review Articles

References

Association AS-L-H. Augmentative and alternative communication (AAC) [cited 2024 July 20]. Available from: https://www.asha.org/practice-portal/professionalissues/augmentative-and-alternative-communication/.

Beukelman D, Light J. Augmentative and alternative communication: Supporting children and adults with complex communication needs. 5th Ed. Pennsylvania: Paul H. Brookes Publishing; 2020.

Desch LW, Gaebler-Spira D, Council on children with disabilities. Prescribing assistive-technology systems: Focus on children with impaired communication. Pediatrics. 2008; 121(6): 1271-80. doi:10.1542/peds. 2008-0695.

Blackstone S, Light J, Beukelman D, Shane H. Visual scene displays. Augment Comm News. 2004; 16(2): 1-6.

Wilkinson KM, Light J. Preliminary investigation of visual attention to human figures in photographs: Potential considerations for the design of aided AAC visual scene displays. J Speech Lang Hear Res. 2011; 54(6): 1644-57. doi:10.1044/1092-4388(2011/10-0098).

Dietz A, McKelvey M, Beukelman DR. Visual scene displays (VSD): New AAC interfaces for persons with aphasia. Perspect Augment Altern Commun. 2006; 15(1): 13-7. doi: 10.1044/aac15.1.13.

Drager KD, Light JC, Speltz JC, Fallon KA, Jeffries LZ. The performance of typically developing 2½-year-olds on dynamic display AAC technologies with different system layouts and language organizations. J Speech Lang Hear Res. 2003; 46(2): 298-312. doi: 10.1044/ 1092-4388(2003/024).

Drager KD, Light JC, Carlson R, D’Silva K, Larsson B, Pitkin L, Stopper G. Learning of dynamic display AAC technologies by typically developing 3-year-olds. J Speech Lang Hear Res. 2004: 47(5); 1133-48. doi: 10.1044/1092-4388(2004/084).

Drager KD, Light J, Currall J, Muttiah N, Smith V, Kreis D, Nilam-Hall A, Parratt D, Schuessler K, Shermetta K, Wiscount J. AAC technologies with visual scene displays and “just in time” programming and symbolic communication turns expressed by students with severe disability. J Intellect Dev Disabil. 2019; 44(3): 321-36. doi: 10.3109/13668250.2017.1326585.

Holyfield C, Caron JG, Drager K, Light J. Effect of mobile technology featuring visual scene displays and justin-time programming on communication turns by preadolescent and adolescent beginning communicators. Int J Speech Lang Pathol. 2019; 21(2): 201-11. doi: 10. 1080/17549507.2018.1441440.

Higginbotham DJ, Shane H, Russell S, Caves K. Access to AAC: Present, past, and future. Augment Altern Commun. 2007; 23(3): 243-57. doi: 10.1080/0743 4610701571058.

Hoag LA, Bedrosian JL, MCcoy KF, Johnson DE. Positioning students with cerebral palsy to use augmentative and alternative communication. Lang Speech Hear Serv Sch. 1990; 21(1): 15-21. doi: 10.1044/ 0161-1461.2101.15.

Hoag LA, Bedrosian JL, MCcoy KF, Johnson DE. Hierarchy of conversational rule violations involving utterancebased augmentative and alternative communication systems. Augment Altern Commun. 2008; 24(2): 149-61. doi: 10.1080/07434610802038288

McCoy KF, Bedrosian JL, Hoag LA, Johnson DE. Brevity and speed of message delivery trade-offs in augmentative and alternative communication. Augment Altern Commun. 2007; 23(1): 76-88. doi: 10.1080/07434610600924515.

Todman J. Rate and quality of conversations using a text-storage AAC system: Single-case training study. Augment Altern Commun. 2000; 16(3): 164-79. doi: 10.1080/07434610012331279024.

Blackstone S. Designing displays: Hints and examples. Augment Comm News. 1993; 6(1): 1-6.

Light J, Lindsay P. Cognitive science and augmentative and alternative communication. Augment Altern Commun. 1991; 7(3): 186-203. doi: 10.1080/074346 19112331275893.

Johnson JM, Inglebret E, Jones C, Ray J. Perspectives of speech language pathologists regarding success versus abandonment of AAC. Augment Altern Commun. 2006; 22(2): 85-99. doi: 10.1080/07434610500483588.

Light J, Wilkinson KM, Thiessen A, Beukelman DR, Fager SK. Designing effective AAC displays for individuals with developmental or acquired disabilities: State of the science and future research directions. Augment Altern Commun. 2019; 35(1): 42-55. doi: 10.1080/07434618.2018.1558283

Burke R, Beukelman DR, Hux K. Accuracy, efficiency and preferences of survivors of traumatic brain injury when using three organization strategies to retrieve words. Brain Inj. 2004; 18(5): 497-507. doi: 10.1080/ 02699050310001645784.

Fitzgerald E, editor. Straight language for the deaf. In: Proceedings of the Twenty-Eighth Meeting of the Convention of American Instructors of the Deaf; 1933; West Trenton, New Jersey.

Dada S, Huguet A, Bornman J. The iconicity of picture communication symbols for children with English additional language and mild intellectual disability. Augment Altern Commun. 2013; 29(4): 360-73. doi: 10.3109/07434618.2013.849753.

Reichle J, York J, Sigafoos J. Implementing augmentative and alternative communication: Strategies for learners with severe disabilities. Pennsylvania: Paul H. Brookes Publishing; 1991.

Fallon K, Light J, Achenbach A. The semantic organization patterns of young children: Implications for augmentative and alternative communication. Augment Altern Commun. 2003; 19(2): 74-85. doi: 10.1080/07434610 31000112061.

Porter G. Pragmatic Organization Dynamic Display Communication Books Direct Access Templates. Cerebral Palsy Education Centre. 2008.

Dodd JL. Augmentative and alternative communication intervention: an intensive, immersive, socially based service delivery model. California: Plural Publishing; 2017.

Wilkinson KM, Jagaroo V. Contributions of principles of visual cognitive science to AAC system display design. Augment Altern Commun. 2004; 20(3): 123-36. doi: 10.1080/07434610410001699717.

Wolfe JM. Guided Search 2.0: A revised model of visual search. Psychon Bull Rev. 1994; 1: 202-38. doi: 10.3758/ BF03200774.

Wolfe, J., Horowitz, T. What attributes guide the deployment of visual attention and how do they do it?. Nat Rev Neurosci. 2004; 5, 495-501. doi: 10.1038/ nrn1411.

Munir F, Cornish KM, Wilding J. A neuropsychological profile of attention deficits in young males with fragile X syndrome. Neuropsychologia. 2000; 38(9): 1261-70. doi: 10.1016/S0028-3932(00)00036-1.

Lanfranchi S, Carretti B, Spanò G, Cornoldi C. A specific deficit in visuospatial simultaneous working memory in Down syndrome. J Intellect Disabil Res. 2009; 53(5): 474-83. doi: 10.1111/j.1365-2788.2009.01165.x.

Oi Y, Okuzumi H, Kokubun M. Visuospatial working memory in individuals with intellectual disabilities under simultaneous and sequential presentation. J Spec Educ Res. 2018; 7(1): 1-8. doi: 10.6033/ specialeducation.7.1.

Bailey BR, Downing J. Using visual accents to enhance attending to communication symbols for students with severe multiple disabilities. Review. 1994; 26: 101-19.

Davidoff J. Cognition through color. Massachusetts: The MIT Press; 1991.

Davidoff J. The neuropsychology of color. In: Hardin CL, Maffi L. Color categories in thought and language. New York: Cambridge University Press; 1997.

Hanna A, Remington R. The representation of color and form in long-term memory. Memory & Cognition. Mem Cogn. 1996; 24(3): 322-30. doi: 10.3758/BF032 13296.

Sperling G, Reeves A, Blaser E, Lu ZL, Weichselgartner E. Two computational models of attention. In: Braun J, Koch C, Davis J, editors. Visual attention and cortical circuits. Massachusetts: MIT Press; 2001; 177-214.

Gegenfurtner KR, Rieger J. Sensory and cognitive contributions of color to the recognition of natural scenes. Curr Biol. 2000; 10(13): 805-8.

Párraga CA, Troscianko T, Tolhurst D. Spatiochromatic properties of natural images and human vision. Curr Biol. 2002; 12(6): 483-7.

Wurm LH, Legge GE, Isenberg LM, Luebker A. Color improves object recognition in normal and low vision. J Exp Psychol Hum Percept Perform. 1993; 19(4): 899. doi: 10.1037/0096-1523.19.4.899.

Schulz MF, Sanocki T. Time course of perceptual grouping by color. Psychol Sci. 2003; 14(1): 26-30. doi: 10.1111/1467-9280.0141.

Wilkinson KM, Carlin M, Jagaroo V. Preschoolers’ speed of locating a target symbol under different color conditions. Augment Altern Commun. 2006; 22(2): 123-33. doi: 10.1080/07434610500483620.

Wilkinson K, Carlin M, Thistle J. The role of color cues in facilitating accurate and rapid location of aided symbols by children with and without Down syndrome. Am J Speech Lang Pathol. 2008; 17(2): 179-93. doi: 10.1044/1058-0360(2008/018).

Thistle JJ, Wilkinson K. The effects of color cues on typically developing preschoolers’ speed of locating a target line drawing: Implications for augmentative and alternative communication display design. Am J Speech Lang Pathol. 2009; 18(3): 231-40. doi: 10.1044/1058- 0360(2009/08-0029).

Wilkinson KM, O’Neill T, McIlvane WJ. Eye-tracking measures reveal how changes in the design of aided AAC displays influence the efficiency of locating symbols by school-age children without disabilities. J Speech Lang Hear Res. 2014; 57(2): 455-66. doi: 10.1044/2013_JSLHR-L-12-0159.

Wilkinson KM, Madel M. Eye tracking measures reveal how changes in the design of displays for augmentative and alternative communication influence visual search in individuals with Down syndrome or autism spectrum disorder. Am J Speech Lang Pathol. 2019; 28(4): 1649-58. doi: 10.1044/2019_AJSLP-19-0006.

Wilkinson KM, McIlvane WJ. Perceptual factors influence visual search for meaningful symbols in individuals with intellectual disabilities and Down syndrome or autism spectrum disorders. Am J Intellect Dev Disabil. 2013; 118(5): 353-64. doi: 10.1352/1944-7558-118. 5.353.

Hetzroni O, Ne’eman A. Influence of color on acquisition and generalization of graphic symbols. J Intellect Disabil Res. 2013; 57(7): 669-80. doi: 10.1111/j.1365-2788. 2012.01584.x.

Wilkinson KM, Coombs B. Preliminary exploration of the effect of background color on the speed and accuracy of search for an aided symbol target by typically developing preschoolers. Early Child Serv (San Diego). 2010; 4(3): 171-83. PMID: 26457074.

Wilkinson KM, Snell J. Facilitating children’s ability to distinguish symbols for emotions: The effects of background color cues and spatial arrangement of symbols on accuracy and speed of search. Am J Speech Lang Pathol. 2011; 20(4): 288-301. doi: 10.1044/1058-0360(2011/10-0065).

Wilkinson K, Weiss A. Background color cues do not facilitate attention to single symbols by individuals with Down syndrome. Poster presentation at: Annual Conference of the American Speech-Language Hearing Association (ASHA); 2017 Nov; Los Angeles, CA.

Thistle JJ, Wilkinson K. Effects of background color and symbol arrangement cues on construction of multi-symbol messages by young children without disabilities: Implications for aided AAC design. Augment Altern Commun. 2017; 33(3): 160-9. doi: 10.1080/ 07434618.2017.1336571.

Bialystok E. Factors in the growth of linguistic awareness. Where Language Meets Thought. New York. Routledge. 1986; 5-25.

Wilkinson KM, Gilmore R, Qian Y. Judicious arrangement of symbols on a simulated augmentative and alternative communication display optimizes visual attention by individuals with Down syndrome. J Speech Lang Hear Res. 2022; 65(2): 710-26. doi: 10.1044/2021_JSLHR21-00278.

Bulakowski PF, Post RB, Whitney D. Reexamining the possible benefits of visual crowding: Dissociating crowding from ensemble percepts. Atten Percept Psychophys. 2011; 73(4): 1003-9. doi: 10.3758/s134 14-010-0086-2.

Keshvari S, Rosenholtz R. Pooling of continuous features provides a unifying account of crowding. J Vis. 2016; 16(3): 1-15. doi: 10.1167/16.3.39.

Kinsbourne M. Neuropsychology of attention. Neuropsychology. Amsterdam: Elsevier; 1994: 105-23.

Reuter-Lorenz PA, Kinsbourne M, Moscovitch M. Hemispheric control of spatial attention. Brain Cogn. 1990; 12(2): 240-66.

Mesulam M-M. Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Philos Trans R Soc Lond B Biol Sci. 1999; 354(1387): 1325-46. doi: 10.1098/rstb. 1999.0482.

Kosslyn SM. Seeing and imagining in the cerebral hemispheres: A computational approach. In: Readings in Cognitive Science: A Perspective from Psychology and Artificial Intelligence. Amsterdam: Elsevier; 2013; 615-42. doi: 10.1016/B978-1-4832-1446-7.50052-2.

Pizzagalli D, Regard M, Lehmann D. Rapid emotional face processing in the human right and left brain hemispheres: an ERP study. Neuroreport. 1999; 10(13): 2691-8.

Sergent J, Signoret J-L. Varieties of functional deficits in prosopagnosia. Cereb Cortex. 1992; 2(5): 375-88. doi: 10.1093/cercor/2.5.375.