Sine hunter prey optimization enabled deep residual network for diabetes mellitus detection using tongue image

Main Article Content

Jimsha K. Mathew
S. Sathyalakshmi

Abstract

Background: Many people suffer from Diabetes Mellitus (DM), a disease caused by high blood glucose levels. In real-time, many methods are implemented to diagnose DM to obtain a good accuracy level, but those methods remain costlier.


Objective: To develop a method for DM detection with good accuracy and minimum cost.


Materials and methods: In this research, DM is detected using tongue image based on DL model, named Deep Residual Network (DRN) that is trained by proposed Sine Hunter Prey Optimization (SHPO). Here, an adaptive median filter is used for the pre-processing phase, and image segmentation is done using ResUNet++, which is trained by Exponential Anti Corona Virus Optimization (ExpACVO). Here, ExpACVO integrates Anti Corona Virus Optimization (ACVO) and Exponential Weighted Moving Average (EWMA). Further, image augmentation and appropriate feature extraction stages are carried out, leading to DM detection by DRN. Moreover, SHPO is formed by combining the Sine Cosine Algorithm (SCA) and Hunter Prey Optimization (HPO). The performance of the proposed method is analyzed using the Tongue image dataset and the Diabetic images dataset.


Results: The performance of SHPO_DRN is found using four evaluation metrics: accuracy, sensitivity, specificity, and f-measure. Here, these metrics exhibit superior performance with high-range values of 0.961, 0.970, 0.948, and 0.961.


Conclusion: The proposed method detects the DM at earlier stages with a good accuracy.

Article Details

How to Cite
Mathew, J. K., & Sathyalakshmi, S. (2024). Sine hunter prey optimization enabled deep residual network for diabetes mellitus detection using tongue image. Journal of Associated Medical Sciences, 57(2), 76–85. Retrieved from https://he01.tci-thaijo.org/index.php/bulletinAMS/article/view/269177
Section
Research Articles

References

Kaveeshwar SA, Cornwall J. The current state of diabetes mellitus in India. Australas Medical J. 2014; 7(1): 45. doi.org/10.4066/AMJ.2013.1979.

American Diabetes Association, Economic consequences of diabetes mellitus in the US in 1997. Diabetes Care. 1998; 21(2): 296-309. doi.org/10.2337/diacare.21. 2.296.

Wu L, Luo X, Xu Y. Using convolutional neural network for diabetes mellitus diagnosis based on tongue images. J Eng. 2020; 2020(13): 635-8. doi.org/10.1049/joe.2019.1151.

Lontchi-Yimagou E, Sobngwi E, Matsha TE, Kengne AP. Diabetes mellitus and inflammation. Curr Diabetes Rep. 2013; 13(3): 435-44. doi.org/10.1007/s11892- 013-0375-y.

Zhang B, Zhang H. Significant geometry features in tongue image analysis. eCAM. 2015. doi.org/10.1155/2015/897580.

Pang B, Zhang D, Wang K. Tongue image analysis for appendicitis diagnosis. Info Sci. 2005; 175(3): 160-76. doi.org/10.1016/j.ins.2005.01.010.

Wang X, Zhang D. An optimized tongue image color correction scheme. IEEE T Inf Technol B. 2010; 14(6): 1355-64. doi.org/10.1109/TITB.2010.2076378.

Kanawong R, Obafemi-Ajayi T, Liu D, Zhang M, Xu D, Duan Y. Tongue image analysis and its mobile app development for health diagnosis. Trans Info Smart Healthcare. 2017; 99-121. doi.org/10.1007/978-981-10-5717-5_5.

Yildirim O, Talo M, Ay B, Baloglu UB, Aydin G, Acharya UR. Automated detection of diabetic subject using pre-trained 2D-CNN models with frequency spectrum images extracted from heart rate signals. Comput Biol Med. 2019; 113: 103387. doi.org/10.1016/j.compbiomed.2019.103387.

Bandyopadhyay M, Rout M, Satapathy SC. eds. Machine Learning Approaches for Urban Computing. Springer.

doi.org/10.1007/978-981-16-0935-0.

Ismael HA, Al-A’araji NH, Shukur BK. Enhanced the prediction approach of diabetes using an autoencoder with regularization and deep neural network. Period Eng Nat Sci. 2023; 10(6): 156-67. doi.org/10.21533/pen.v10i6.3394.

Qazi EUH, Zia T, Almorjan A. Deep Learning-Based Digital Image Forgery Detection System. App Sci. 2022; 12(6): 2851. doi.org/10.3390/app12062851.

Mirjalili S, Mirjalili S. Genetic algorithm. Evolu Algo Neu Net: Theo & App. 2019; 43-55. doi.org/10.1007/ 978-3-319-93025-1.

Wang D, Tan D, Liu L. Particle swarm optimization algorithm: an overview. Soft comp. 2018; 22: 387-408. doi.org/10.1007/s00500-016-2474-6.

Li J, Zhang B, Lu G, You J, Zhang D. Body surface feature-based multi-modal learning for diabetes mellitus detection. Info Sci. 2019; 472: 1-4. doi.org/10.1016/j.ins.2018.09.010.

Sagayaraj AS, Kabilesh SK, Kumar AA, Gokulnath S, Mani T, Dinakaran K. Diabetes Mellitus and Diabetic Retinopathy Detection using Tongue Images. In Journal of Physics: Conference Series. 2021; 1831(1):

doi.org/10.1088/1742-6596/1831/1/012028.

Naveed S. Early diabetes discovery from tongue images. Compu J. 2022; 65(2): 237-50. doi.org/10.1093/ comjnl/bxaa022.

Deepa SN, Banerjee A. Intelligent decision support model using tongue image features for healthcare monitoring of diabetes diagnosis and classification. Net Mod Anal Heal Info & Bioinfo. 2021; 10(1): 41. doi.org/10.1007/s13721-021-00319-1.

Logeswaran T, Gowrishankar P, Surendar V, Tamilarasu P, Suresh M. Detection of Diabetes Mellitus using Tongue images. Int J Recent Technol Eng. 2019; 8(4): 2475-82. doi.org/10.35940/ijrte.C6409.118419.

Li J, Yuan P, Hu X, Huang J, Cui L, Cui J, Ma X, Jiang T, Yao X, Li J, Shi Y. A tongue features fusion approach to predicting prediabetes and diabetes with machine learning. J Biomed Inform. 2021; 115: 103693. doi.org/10.1016/j.jbi.2021.103693.

Thirunavukkarasu U, Umapathy S, Krishnan PT,

Janardanan K. Human tongue thermography could be a prognostic tool for prescreening the type II diabetes mellitus. Evid-Based Compl Alt. 2020. doi.org/10.1155/2020/3186208.

Shone N, Ngoc TN, Phai VD, Shi Q. A deep learning approach to network intrusion detection. IEEE Trans Emerg Top Comput Intell. 2018; 2(1): 41-50. doi.org/10.1109/TETCI.2017.2772792.

The Tongue image dataset is taken from, https://github.com/BioHit/TongeImageDataset, accessed on May 2023.

The Diabetic images dataset is taken from, https:// drive.google.com/drive/u/0/folders/1SsJE1WMmou5h5yM8TTUy1K44QrtWqE07, accessed on May 2023.

Jubair MI, Rahman MM, Ashfaqueuddin S, Ziko IM. An enhanced decision based adaptive median filtering technique to remove Salt and Pepper noise in digital images. Int Conf Compu & Info Tech (ICCIT 2011), IEEE. 2011; 428-33. doi.org/10.1109/ICCITechn.2011.6164827.

Jha D, Smedsrud PH, Riegler MA, Johansen D, De Lange T, Halvorsen P, Johansen HD. Resunet++: An advanced architecture for medical image segmentation. IEEE Int Sym Multim (ISM), IEEE. 2019; 225-55. doi.org/10.48550/arXiv.1911.07067.

Khalifa NE, Loey M, Mirjalili S. A comprehensive survey of recent trends in deep learning for digital images augmentation. Artif Intell Rev. 2021; 1-27. doi.org/10.1007/s10462-021-10066-4.

He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proc Cvpr IEEE. 2016; 770-8. doi.org/10.48550/arXiv.1512.03385.

Mirjalili S. SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst. 2016; 96: 120-33. doi.org/10.1016/j.knosys.2015.12.022.

Naruei I, Keynia F, Sabbagh Molahosseini A. Hunterprey optimization: Algorithm and applications. Soft Comput. 2022; 26(3): 1279-1314. doi.org/10.1007/s00500-021-06401-0.

Emami H. Anti-coronavirus optimization algorithm. Soft Comput. 2022; 26(11): 4991-5023. doi.org/10.1007/s00500-022-06903-5.

Saccucci MS, Amin RW, Lucas JM. Exponentially weighted moving average control schemes with variable sampling intervals. Commun Stat-Simul C. 1992; 21(3): 627-57. doi.org/10.1080/036109 19208813040.

Khairandish MO, Sharma M, Jain V, Chatterjee JM, Jhanjhi NZ. A hybrid CNN-SVM threshold segmentation approach for tumor detection and classification of MRI brain images. IRBM. 2021. doi.org/10.1016/j.irbm.2021.06.003.

Hemanth DJ. EEG signal based modified Kohonen neural networks for classification of human mental emotions. J Artif Intell & Sys. 2020; 2: 1-13. doi.org/10.33969/AIS.2020.21001.

Reddy AC. Evaluation of Surface Roughness Using Image Processing Technique. Pentagram Res Cen (P) Ltd. 2004. doi.org/10.13140/2.1.2687.5207.

Huang K, Liu X, Fu S, Guo D, Xu M, A lightweight privacy-preserving CNN feature extraction framework for mobile sensing. IEEE T Depend Secure. 2019; 18(3): 1441-55. doi.org/10.1109/TDSC.2019.2913362.

Chen Z, Chen Y, Wu L, Cheng S, Lin P. Deep residual network based fault detection and diagnosis of photovoltaic arrays using current-voltage curves and ambient conditions. Energ Convers Manage. 2019; 198: 111793. doi.org/10.1016/j.enconman.2019.111793.