Non-transfusion dependent HbE/βO-thalassemia as the results of co-existent SEA-αO thalassemia, Hb Constant Spring, and XmnI-Gγ site: Thai family studies

Main Article Content

Thanusak Tatu
Wachirawit Tondee
Pornchai Khamtong
Lamplimas Tangphan
Jidapa Jaitiang

Abstract

Background: Four university students of northern Thai descent were found to be HbE/βO-thalassemia. However, they all had a mild form of this disease, categorized as Non-Transfusion Dependent Thalassemia.


Objectives: To analyze involvement of types of β-globin mutations, α-thalassemia, and XmnI-Gγ site in mild clinical symptoms observed in four Thai non-transfusion dependent HbE/βO-thalassemia cases.


Materials and methods: EDTA blood samples were collected from the patients and their family members after signing the informed consent. Automated complete blood count with blood smear examination, hemoglobin typing, molecular analysis for α and β-globin mutations, β-globin gene haplotypes, and XmnI-Gγ site were performed on all blood samples. In addition, nucleotide sequencing of β-globin gene and globin chain separation were performed for patient#3 and their parents.


Results: The first three patients had hemoglobin levels ranging 8.5-11.2 g/dL, while the fourth patient had hemoglobin level of 6.7 g/dL. The first and fourth patients were compound heterozygote for βE (HBB:c.79G>A) and β17 (HBB:c.52A>T) alleles with typical hemoglobin pattern of EF. The second patient was compound heterozygote for βE and β41/42 (HBB:c.126_129delCTTT) alleles also with typical hemoglobin pattern of EF. The third patient was compound heterozygote of βE and βIVS1-1(HBB:c.92+1G>T), however, with atypical hemoglobin pattern of EE. Family analysis found co-inheritance of Hb Constant Spring (HBA2:c.427T>C) and the XmnI-Gγ site (T at rs7482144) in the first two patients, of SEA-αO thalassemia (NG_000006.1:g.26264_45564del19301) and XmnI-Gγ site in the third patient, and of only XmnI-Gγ site in the fourth patient.


Conclusion: These family studies proved the fact that co-existence of SEA-αO thalassemia and Hb Constant Spring in HbE/βO-thalassemia could lead to mild clinical severity. Minimal effect of XmnI-Gγ site on clinical symptoms of this disease was emphasized. This information should be useful in prenatal diagnosis of HbE/β-thalassemia.

Article Details

How to Cite
Tatu, T., Tondee, W. ., Khamtong, P. ., Tangphan, L. ., & Jaitiang, J. . (2023). Non-transfusion dependent HbE/βO-thalassemia as the results of co-existent SEA-αO thalassemia, Hb Constant Spring, and XmnI-Gγ site: Thai family studies. Journal of Associated Medical Sciences, 57(1), 47–59. Retrieved from https://he01.tci-thaijo.org/index.php/bulletinAMS/article/view/263628
Section
Research Articles

References

Weatherall DJ, Clegg JB. The Thalassaemia Syndromes. 4th Ed. Oxford: Blackwell Scientific, 2001. doi:10.1002/ 9780470696705

Fucharoen S, Weatherall DJ (2012) The hemoglobin E thalassemias. Cold Spring Harb Perspect Med. 2012; 2(8): 1-15. doi: 10.1101/cshperspect.a011734.

Thein SL. Genetic modifiers of β-thalassemia. Haematologica 2005; 90(5): 649-60. PMID: 15921380

Musallam KM, Cappellini MD, Viprakasit V, et al. Revisiting the non-transfusion-dependent (NTDT) vs. transfusion-dependent (TDT) thalassemia classification 10 years later. Am J Hematol. 2021; 96(2): E54-E56. doi: 10.1002/ajh.26056.

Tatu T, Kiewkarnkha T, Khuntarak S, et al. Screening for co-existence of α-thalassemia in β-thalassemia and in HbE heterozygotes via an enzyme-linked immunosorbent assay for Hb Bart’s and embryonic ζ-globin chain. Int J Hematol. 2012; 95(4): 386-93. doi: 10.1007/s12185-012-1039-4.

Srisuwan W, Tatu T. Diagnosis of thalassemia carriers commonly found in northern Thailand via a combination of MCV or MCH and PCR-based methods. Bull Chiang Mai Assoc Med Sci. 2013; 46(1): 22-32.

Tatu T, Sritong W, Sa-Nguansermsri T. The associations of SEA-α thalassemia 1, XmnI-Gγ polymorphism and β-globin gene mutations with the clinical severity of β-thalassemia syndrome in northern Thailand. J Med Assoc Thai. 2014; 97(3): 300-7. PMID: 25123009

Kerdpoo S, Limweeraprajak E, Tatu T. Effect of Swisstype heterocellular HPFH from XmnI-Gγ and HBBP1 polymorphisms on HbF, HbE, MCV and MCH levels in Thai HbE carriers. Int J Hematol. 2014; 99(3): 338-44. doi: 10.1007/s12185-014-1516-z.

Dos Santos Silva W,de Nazare Klautau-Guimaraes M, Grisolia CK. β-globin haplotypes in normal and hemoglobinopathic individuals from Reconcavo Baiano, State of Bahia, Brazil. Genet Mol Biol. 2010; 33(3): 411-7. doi: 10.1590/S1415-47572010005000042.

Sutton M, Bouhassira EE, Nagel RL (1989) Polymerase chain reaction amplification applied to the determination of β-like globin gene cluster haplotypes. Am J Hematol. 1989; 32(1): 66-9. doi: 10.1002/ajh.2830320113.

Sripichai O, Makarasara W, Munkongdee T, et al. A scoring system for the classification of β-thalassemia/ Hb E disease severity. Am J Hematol. 2008; 83(6): 482-4. doi: 10.1002/ajh.21130.

Galanello R, Cao A. Relationship between genotype and phenotype. Thalassemia intermedia. Ann NY Acad Sci. 1998; 850: 325-33. doi: 10.1111/j.1749- 6632.1998.tb10489.x.

Cao A, Galanello R, Rosatelli MC. Genotype-phenotype correlations in β-thalassemias. Blood Rev. 1994; 8(1): 1-12. doi: 10.1016/0268-960x(94)90002-7.

Fucharoen S, Winichagoon P. Clinical and hematologic aspects of hemoglobin E beta-thalassemia. Curr Opin Hematol. 2000; 7(2): 106-12. doi: 10.1097/00062752- 200003000-00006.

Traivaree C, Monsereenusorn C, Rujkijyanont P, et al. Genotype-phenotype correlation among β-thalassemia and β-thalassemia/HbE disease in Thai children: predictable clinical spectrum using genotypic analysis. J Blood Med. 2018; 9: 35-41. doi: 10.2147/JBM.S159295. eCollection 2018.

Viprakasit V, Ekwattanakit S. Clinical Classification, Screening and Diagnosis for Thalassemia. Hematol Oncol Clin North Am. 2018; 32(2): 193-211. doi: 10.1016/j.hoc.2017.11.006.

Laboratories of Computer Science & Engineering and Biochemistry & Molecular Biology at the Pennsylvania State University. Globin Gene Server. 1999. https://globin.bx.psu.edu/. Accessed 25 Sept 2021.

Laosombat V, Wongchanchailert M, Sattayasevana B, et al. Clinical and hematologic features of βO-thalassemia (frameshift 41/42 mutation) in Thai patients. Haematologica. 2001; 86(2): 138-41. PMID: 11224481

Laosombat V, Wongchanchailert M, Sattayasevana B, et al (2001) Clinical and hematological features of codon 17, A-T mutation of β-thalassemia in Thai patients. Eur J Haematol. 2001; 66(2): 126-9. D doi: 10.1034/j.1600-0609.2001.00305.x.

Hunt DM, Higgs DR, Winichagoon, P, et al. Haemoglobin

Constant Spring has an unstable α chain messenger RNA. Br J Haematol. 1982; 51(3): 405-13. doi: 10.111 1/j.1365-2141.1982.tb02796.x.

Waggoner SA, Liebhaber SA. Regulation of α-globin mRNA stability. Exp Biol Med. (Maywood) 2003; 228(4): 387-95. doi: 10.1177/153537020322800409.

Bernini LF, Harteveld CL (1998) Alpha-Thalassemia. In: Rodgers GP, editor. Bailliere’s Clinical Haematology, International Practice and Research, Sickle cell disease and Thalassaemia. London: Bailliere Tindall; 1998. pp. 53-90.

Charoenkwan P, Taweephon R, Sae-Tung R, et al. Molecular and clinical features of Hb H disease in northern Thailand. Hemoglobin. 2005; 29(2): 133-40. PMID: 15921165

Fucharoen S, Viprakasit V. Hb H disease: clinical course and disease modifiers. Hematology Am Soc Hematol Educ Program. 2009: 26-34. doi: 10.1182/ asheducation-2009.1.26.

Garner C, Tatu T, Reittie JE, et al. Genetic influences on F cells and other hematologic variables: a twin heritability study. Blood. 2000; 95(1): 342-6. PMID: 10607722

Thein SL, Craig JE. Genetics of Hb F/F cell variance in adults and heterocellular hereditary persistence of fetal hemoglobin. Hemoglobin. 1998; 22(5-6): 401-14. doi: 10.3109/03630269809071538.

Thein SL, Menzel S. Discovering the genetics underlying foetal haemoglobin production in adults. Br J Haematol. 2009; 145(4): 455-67. doi:10.1111/j.1365-2141.2009. 07650.x.

Thein SL, Menzel S, Lathrop M, et al. Control of fetal hemoglobin: new insights emerging from genomics and clinical implications. Hum Mol Genet. 2009; 18(R2): R216-23. doi: 10.1093/hmg/ddp401.

Alaoui-Ismaili FZ, Laghmich A, Ghailani-Nourouti N, et al. XmnI polymorphism in sickle cell disease in north Morocco. Hemoglobin. 2020; 44(3): 190-4. doi: 10.1080/03630269.2020.1772284.

Laosombat V, Wongchanchailert M, Sattayasevana B, et al. Clinical and hematological features of β+- thalassemia (IVS-1 nt 5, G-C mutation) in Thai patients. Eur J Haematol 2001; 67(2): 100-4. doi: 10.1034/j.1600-0609.2001.t01-1-00431.x.

Winichagoon P, Fucharoen S, Chen P, et al. Genetic factors affecting clinical severity in beta-thalassemia syndromes. J Pediatr Hematol Oncol. 2000; 22(6): 573-80. doi: 10.1097/00043426-200011000-00026.

Charoenkwan P, Teerachaimahit P, Sanguansermsri T. The correlation of α-globin gene mutations and the XmnI polymorphism with clinical severity of Hb E/β-thalassemia. Hemoglobin. 2014; 38(5): 335-8. doi: 10.3109/03630269.2014.952744.

Winichagoon P, Fucharoen S, Wilairat P, Chihara K, Fukumaki Y. Role of alternatively spliced βE-globin mRNA on clinical severity of β-thalassemia/ hemoglobin E disease. Southeast Asian J Trop Med Public Health. 1995;26(Suppl 1):241-5. PMID: 8629114

Harteveld CL, Higgs DR. Alpha-thalassaemia. Orphanet J Rare Dis. 2010; 5: 13. doi: 10.1186/1750-1172-5-13.

Higgs DR, Weatherall DJ. The Alpha Thalassaemias. Cell Mol Life Sci. 2009; 66(7): 1154-62. doi: 10.1007/ s00018-008-8529-9.

Sripichai O, Munkongdee T, Kumkhaek C, et al. Coinheritance of the different copy numbers of α-globin gene modifies severity of β-thalassemia/ Hb E disease. Ann Hematol. 2008; 87(5): 375-9. doi: 10.1007/s00277-007-0407-2.

Sharma V, Kumar B, Kumar G, et al. Alpha globin gene numbers: an important modifier of HbE/β thalassemia. Hematology. 2009; 14(5): 297-300. doi: 10.1179/102453309X446126.