Cordyceps militaris extracts inhibit FLT3 protein expression and induce cell cycle arrest in FLT3 overexpressing leukemic cell models

Main Article Content

Win Lae Aung
Wantida Chaiyana
Sawitree Chiampanichayakul
Songyot Anuchapreeda
Singkome Tima

Abstract

Background: Leukemia is a type of blood cancer, which is characterized by the clonal proliferation of malignant leukocytes resulting in production of abnormal blood cells. Mutations in the FMS-like tyrosine kinase 3 (FLT3) gene are one of the most frequently identified genetic alterations that affect downstream intracellular signaling pathways thereby enhancing leukemogenesis. Nowadays, drugs from herbal sources were selected as alternative drugs for studying their effectiveness on leukemia treatment.


Objectives: This study aimed to evaluate anti-leukemia activities of various Cordyceps militaris (C. militaris) extracts including crude extract (Crude) and fractional extracts from hexane (Hex), ethyl acetate (EtOAc), and ethanol (EtOH) on EoL-1 and MV4-11 cells.


Materials and methods: Cytotoxicity and effects on FLT3 protein expression and cell cycle progression were investigated and compared with standard cordycepin using MTT assay, Western blotting, and PI staining, respectively.


Results: The results demonstrated that EtOAc and Hex fractional extracts showed the strongest cytotoxic effects on EoL-1 cells with inhibitory concentration at 50% growth (IC50) values of 11.0±2.9 and 11.7±0.6 μg/mL and 45.9±0.4 and 36.8±15.3 μg/mL for MV4-11 cells, respectively. Crude and EtOAc fractional extracts exhibited excellent inhibitory effects on FLT3 protein expression. Moreover, the cell cycle progression of both leukemic cells was arrested at S phase after treatment. The obtained results are in the same pattern with standard cordycepin.


Conclusion: Overall, this present study showed that anti-leukemia activities of C. militaris on EoL-1 and MV4-11 may involve the inhibition of cell proliferation by inhibiting FLT3 protein expression and inducing cell cycle arrest at S phase and cordycepin may plays a major role of these activities.

Article Details

How to Cite
Lae Aung, W., Chaiyana, W., Chiampanichayakul, S., Anuchapreeda, S., & Tima, S. (2023). Cordyceps militaris extracts inhibit FLT3 protein expression and induce cell cycle arrest in FLT3 overexpressing leukemic cell models. Journal of Associated Medical Sciences, 56(2), 68–78. Retrieved from https://he01.tci-thaijo.org/index.php/bulletinAMS/article/view/259200
Section
Research Articles

References

Kumar CC. Genetic abnormalities and challenges in the treatment of acute myeloid leukemia. Genes Cancer. 2011; 2(2): 95-107. doi: 10.1177/1947601911408076.

Klepin HD, Balducci L. Acute myelogenous leukemia in older adults. Oncologist. 2009; 14(3): 222-32. doi: 10.1634/theoncologist.2008-0224.

Chen KTJ, Gilabert-Oriol R, Bally MB, Leung AWY. Recent treatment advances and the role of nanotechnology, combination products, and immunotherapy in changing the therapeutic landscape of acute myeloid leukemia. Pharm Res. 2019; 36(9): 125. doi: 10.1007/s11095-019-2654-z.

Ramos NR, Mo CC, Karp JE, Hourigan CS. Current approaches in the treatment of relapsed and refractory acute myeloid leukemia. J Clin Med. 2015; 4(4): 665-95. doi: 10.3390/jcm4040665.

Dombret H, Gardin C. An update of current treatments for adult acute myeloid leukemia. Blood. 2016; 127(1): 53-61. doi: 10.1182/blood-2015-08-604520.

Stirewalt DL, Radich JP. The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer. 2003; 3(9): 650-65. doi: 10.1038/nr c1169.

Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010; 141(7): 1117-34. doi: 10.1016/j.cell.2010.06.011.

Tsapogas P, Mooney CJ, Brown G, Rolink A. The cytokine Flt3-ligand in normal and malignant hematopoiesis. Int J Mol Sci. 2017; 18(6): 1115. doi: 10.3390/ijms18061115.

Kazi JU, Rönnstrand L. FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications. Physiol Rev. 2019; 99(3): 1433-66. doi: 10.1152/physrev.00029.2018.

O'Donnell MR, Tallman MS, Abboud CN, Altman JK, Appelbaum FR, Arber DA, et al. Acute Myeloid Leukemia, Version 3.2017, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2017; 15(7): 926-57. doi: 10.6004/jnccn.2017.0116.

Levis M. FLT3 mutations in acute myeloid leukemia: what is the best approach in 2013? Hematology Am Soc Hematol Educ Program. 2013; 2013: 220-6. doi: 10.1182/asheducation-2013.1.220.

Kottaridis PD, Gale RE, Linch DC. Flt3 mutations and leukaemia. Br J Haematol. 2003; 122(4): 523-38. doi: 10.1046/j.1365-2141.2003.04500.x.

Nagel G, Weber D, Fromm E, Erhardt S, Lübbert M, Fiedler W, et al. Epidemiological, genetic, and clinical characterization by age of newly diagnosed acute myeloid leukemia based on an academic population-based registry study (AMLSG BiO). Ann Hematol. 2017; 96(12): 1993-2003. doi: 10.1007/s00277-017-3150-3.

Grafone T, Palmisano M, Nicci C, Storti S. An overview on the role of FLT3-tyrosine kinase receptor in acute myeloid leukemia: biology and treatment. Oncol Rev. 2012; 6(1): e8. doi: 10.4081/oncol.2012.e8.

Cao ZX, Wen Y, He JL, Huang SZ, Gao F, Guo CJ, et al. Isoliquiritigenin, an orally available natural FLT3 inhibitor from licorice, exhibits selective anti-acute myeloid leukemia efficacy in vitro and in vivo. Mol Pharmacol. 2019; 96(5): 589-99. doi: 10.1124/mol.119.116129.

Tima S, Ichikawa H, Ampasavate C, Okonogi S, Anuchapreeda S. Inhibitory effect of turmeric curcuminoids on FLT3 expression and cell cycle arrest in the FLT3-overexpressing EoL-1 leukemic cell line. J Nat Prod. 2014; 77(4): 948-54. doi: 10.1021/np401028h.

Sangkaruk R, Rungrojsakul M, Tima S, Anuchapreeda S. Effect of Thai saraphi flower extracts on WT1 and BCR/ABL protein expression in leukemic cell lines. Afr J Tradit Complement Altern Med. 2017; 14(2): 16-24. doi: 10.21010/ajtcam.v14i2.3.

Cui JD. Biotechnological production and applications of Cordyceps militaris, a valued traditional Chinese medicine. Crit Rev Biotechnol. 2015; 35(4): 475-84. doi: 10.3109/07388551.2014.900604.

Das SK, Masuda M, Sakurai A, Sakakibara M. Medicinal uses of the mushroom Cordyceps militaris: current state and prospects. Fitoterapia. 2010; 81(8): 961-8. doi: 10.1016/j.fitote.2010.07.010.

Hur H. Chemical Ingredients of Cordyceps militaris. Mycobiology. 2008; 36(4): 233-5. doi: 10.4489/MYCO. 2008.36.4.233.

Park C, Hong SH, Lee JY, Kim GY, Choi BT, Lee YT, et al. Growth inhibition of U937 leukemia cells by aqueous extract of Cordyceps militaris through induction of apoptosis. Oncol Rep [Internet]. 2005; 13(6): 1211-6. Available from: https://doi.org/10.3892/or.13.6.1211.

Chou SM, Lai WJ, Hong TW, Lai JY, Tsai SH, Chen YH, et al. Synergistic property of cordycepin in cultivated Cordyceps militaris-mediated apoptosis in human leukemia cells. Phytomedicine. 2014; 21(12): 1516-24. doi: 10.1016/j.phymed.2014.07.014.

Park JG, Son Y-J, Lee TH, Baek NJ, Yoon DH, Kim TW, et al. Anticancer efficacy of Cordyceps militaris ethanol extract in a xenografted leukemia model. Evid Based Complement Alternat Med. 2017; 2017: 8474703. doi: 10.1155/2017/8474703.

Lee H, Kim YJ, Kim HW, Lee DH, Sung MK, Park T. Induction of apoptosis by Cordyceps militaris through activation of caspase-3 in leukemia HL-60 cells. Biol Pharm Bull. 2006; 29(4): 670-4. doi: 10.1248/bpb.29.670.

Marsup P, Yeerong K, Neimkhum W, Sirithunyalug J, Anuchapreeda S, To-Anun C, et al. Enhancement of chemical stability and dermal delivery of Cordyceps militaris extracts by nanoemulsion. Nanomaterials (Basel). 2020; 10(8): 1565. doi: 10.3390/nano 10081565.

Tuli HS, Sandhu SS, Sharma AK. Pharmacological therapeutic potential of Cordyceps with special reference to Cordycepin. 3 Biotech. 2014; 4(1): 1-12. doi: 10.1007/s13205-013-0121-9.

Ashraf SA, Elkhalifa AEO, Siddiqui AJ, Patel M, Awadelkareem AM, Snoussi M, et al. Cordycepin for Health and Wellbeing: A Potent Bioactive Metabolite of an Entomopathogenic Cordyceps Medicinal Fungus and Its Nutraceutical and Therapeutic Potential. Molecules. 2020; 25(12): 5347718. doi: 10.1155/2022/5347718.

Abubabar AR, Haque M. Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposese. J Pharm Bioallied Sci. 2020; 12(1): 1-10. doi: 10.4103/jpbs.JPBS_175_19.

Elmeliegy M, Den Haese J, Talati C, Wetzler M, Jusko WJ. Towards better combination regimens of cytarabine and FLT3 inhibitors in acute myeloid leukemia. Cancer Chemother Pharmacol. 2020; 86(3): 325-37.doi: 10. 1007/s00280-020-04114-z.

Marhäll A, Heidel F, Fischer T, Rönnstrand L. Internal tandem duplication mutations in the tyrosine kinase domain of FLT3 display a higher oncogenic potential than the activation loop D835Y mutation. Ann Hematol. 2018; 97(5): 773-80. doi: 10.1007/s00277-018-3245-5.

Holliday J, Cleaver MP. Medicinal value of the caterpillar fungi species of the genus Cordyceps (Fr.) Link (Ascomycetes). A Review. Int J Med Mushrooms. 2008; 10(3): 219-34. Doi: 10.1615/IntJMedMushr.v10.i3.30.

Tima S, Tapingkae T, To-Anun C, Noireung P, Intaparn P, Chaiyana W, et al. Antileukaemic cell proliferation and cytotoxic activity of edible golden Cordyceps (Cordyceps militaris) extracts. Evid Based Complement Alternat Med. 2022; 2022: 5347718. doi: 10.1155/2022/5347718.

Do T, Nguyen HC. Extraction of cordycepic acid from the fruiting body of Cordyceps militaris (L.). BioTechnologia [Internet]. 2019; 100(3): 219-26. Available from: https://doi.org/10.5114/bta.2019.87581.

Oh JY, Choi WS, Lee CH, Park HJ. The ethyl acetate extract of Cordyceps militaris inhibits IgE-mediated allergic responses in mast cells and passive cutaneous anaphylaxis reaction in mice. J Ethnopharmacol. 2011; 135(2): 422-9. doi: 10.1016/j.jep.2011.03.030.

Eiamthaworn K, Kaewkod T, Bovonsombut S, Tragoolpua Y. Efficacy of Cordyceps militaris Extracts against Some Skin Pathogenic Bacteria and Antioxidant Activity. J Fungi (Basel). 2022; 8(4): 327. doi: 10.3390/jof8040327.

Wang M, Meng XY, Yang RL, Qin T, Wang XY, Zhang KY, et al. Cordyceps militaris polysaccharides can enhance the immunity and antioxidation activity in immunosuppressed mice. Carbohydr Polym. 2012; 89(2): 461-6. doi: 10.1016/j.carbpol.2012.03.029.

El-Hagrassi A, Daba G, Elkateeb W, Ahmed E, El-Dein AN, Fayad W, et al. In vitro bioactive potential and chemical analysis of the n-hexane extract of the medicinal mushroom, Cordyceps militaris. Malays J Microbiol [Internet]. 2020; 16(1): 40-8. Available from: http://mjm.usm.my/uploads/issues/1578/Formatted%20MJM-19-0346_checked_COLOUR.pdf.

Tian T, Song L, Zheng Q, Hu X, Yu R. Induction of apoptosis by Cordyceps militaris fraction in human chronic myeloid leukemia K562 cells involved with mitochondrial dysfunction. Pharmacogn Mag. 2014; 10(39): 325-31. doi: 10.4103/0973-1296.137374.

Liao Y, Ling J, Zhang G, Liu F, Tao S, Han Z, et al. Cordycepin induces cell cycle arrest and apoptosis by inducing DNA damage and up-regulation of p53 in Leukemia cells. Cell Cycle. 2015; 14(5): 761-71. doi: 10.1080/15384101.2014.1000097.