Evaluation of the Varian TrueBeam™ 6 MV phase-space files for the Monte Carlo simulation in small field dosimetry

Main Article Content

Mananchaya Vimolnoch
Isra Israngkul Na Ayuthaya
Sakda Kingkaew
Sornjarod Oonsiri

Abstract

Background: The Monte Carlo (MC) simulation is an effective tool for determining the absorbed dose in small field sizes. To calculate accurate results, the MC simulation requires precise geometric and material descriptions of the linear accelerator head. Due to proprietary information issues, the description of the Varian TrueBeam™ linear accelerator (Varian Medical Systems, Palo Alto, CA) head geometry and material information are not available. Instead, the manufacturer provided a phase-space file just above the jaw for each photon energy level. Although several studies have validated the accuracy of this phase-space file, to the best of our knowledge, there are no reported data for a small field size (<2x2 cm2) of 6 MV photon beams.


Objectives: The purpose of this study was to evaluate the Varian TrueBeam™ phase-space file of the 6 MV photon beam provided by the manufacturer for the Monte Carlo (MC) simulation in small field dosimetry.


Materials and methods: The TrueBeam™ linear accelerator was simulated using an EGSnrc MC code with a Varian phase-space file as the input. The simulation was compared with the measurement using percent depth dose (PDD) and beam profile, and the field output factor (FOF) for the 0.6x0.6, 1x1, 2x2, 3x3, 4x4, 6x6, and 10x10 cm2 field sizes.


Results: The agreement between the measurements and simulated PDD data was under 2.2% beyond the buildup region. The distance to agreement (DTA) in the buildup region was within 1.0 mm. The simulation data presented identical profiles with the measurement within 1.0% of the dose difference or 1.2 mm of the DTA. The mean dose difference in the radiation field was ≤1.5% for the ≥1x1 cm2 field size. The largest deviation was observed in the 0.6x0.6 cm2 inline beam profile. The deviation of the penumbra and full width at half maximum (FWHM) between simulation and measurement was <2 mm. The agreement of the simulated and measured FOF was within 1.0%, except for the 0.6x0.6 cm2 field size.


Conclusion: Overall, the MC simulation demonstrates data that is consistent with the measurement for the ≥1x1 cm2 field sizes. These data assure that the 6 MV Varian phase-space file can be used as a radiation source for accurate MC dose calculation in a small field. However, a large discrepancy in beam profiles was observed at the 0.6x0.6 cm2 field size due to the different primary source sizes among TruebeamTM machines.

Article Details

How to Cite
Vimolnoch, M., Israngkul Na Ayuthaya, I., Kingkaew, S., & Oonsiri, S. (2022). Evaluation of the Varian TrueBeam™ 6 MV phase-space files for the Monte Carlo simulation in small field dosimetry. Journal of Associated Medical Sciences, 55(3), 26–35. Retrieved from https://he01.tci-thaijo.org/index.php/bulletinAMS/article/view/254965
Section
Research Articles

References

PalmansH, Andreo P,Huq MS, et al. Dosimetry of small static fields used in external beam radiotherapy: an IAEA-AAPM International Code of Practice for reference and relative dose determination, Technical Report Series No. 483. International Atomic Energy Agency: Vienna, Austria, 2017.

Chetty IJ, Curran B, Cygler JE, et al. Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys. 2007; 34(12): 4818-53. DOI: 10.1118/1.2795842.

Benmakhlouf H, Sempau J, Andreo P. Output correction factors for nine small field detectors in 6 MV radiation therapy photon beams: a PENELOPE Monte Carlo study. Med Phys. 2014; 41(4): 041711. DOI: 10.1118/1.4868695.

Francescon P, Cora S, Satariano N. Calculation of k(Q(clin),Q(msr) ) (f(clin),f(msr) ) for several small detectors and for two linear accelerators using Monte Carlo simulations. Med Phys. 2011; 38(12): 6513-27. DOI: 10.1118/1.3660770.

Cranmer-Sargison G, Weston S, Sidhu NP, et al. Experimental small field 6MV output ratio analysis for various diode detector and accelerator combinations. Radiother Oncol. 2011; 100(3): 429-35. DOI: 10.1016/j.radonc.2011.09.002.

Constantin M, Perl J, LoSasso T, et al. Modeling the truebeam linac using a CAD to Geant4 geometry implementation: dose and IAEA-compliant phase space calculations. Med Phys. 2011; 38(7): 4018-24. DOI: 10.1118/1.3598439.

Belosi MF, Rodriguez M, Fogliata A, et al. Monte Carlo simulation of TrueBeam flattening-filter-free beams using Varian phase-space files: Comparison with experimental data. Med Phys. 2014; 41(5): 051707. DOI: 10.1118/1.4871041.

Gete E, Duzenli C, Milette M-P, et al. A Monte Carlo approach to validation of FFF VMAT treatment plans for the TrueBeam linac. Med Phys. 2013; 40(2): 021707. DOI: 10.1118/1.4773883.

Bergman AM, Gete E, Duzenli C, et al. Monte Carlo modeling of HD120 multileaf collimator on Varian TrueBeam linear accelerator for verification of 6X and 6X FFF VMAT SABR treatment plans. J Appl Clin Med Phys. 2014; 15(3): 4686. DOI: 10.1120/jacmp.v15i3.4686.

Qin Y, Zhong H, Wen N, et al. Deriving detector‐specific correction factors for rectangular small fields using a scintillator detector. J Appl Clin Med Phys. 2016; 17(6): 379-91. DOI: 10.1120/jacmp.v17i6.6433.

Feng Z, Yue H, Zhang Y, et al. Monte Carlo simulation of beam characteristics from small fields based on TrueBeam flattening-filter-free mode. Radiat Oncol. 2016; 11(1): 30. DOI: 10.1186/s13014-016-0601-2.

Papaconstadopoulos P, Levesque IR, Aldelaijan S, et al. Modeling the primary source intensity distribution: reconstruction and inter-comparison of six Varian TrueBeam sources. Phys Med Biol. 2019; 64: 135005. DOI: https://doi.org/10.1088/1361-6560/ab1ccc.

Kawrakow I. The EGSnrc Code System, Monte Carlo Simulation of Electron and photon Transport. NRCC Report PIRS-701. 2001.

Rogers D, Walters B, Kawrakow I. BEAMnrc users manual. Nrc Report Pirs. 2009; 509: 12.

Walters B, Kawrakow I, Rogers D. DOSXYZnrc users manual. Nrc Report Pirs. 2005; 794: 57-8.

Low DA, Dempsey JF. Evaluation of the gamma dose distribution comparison method. Med Phys. 2003; 30(9): 2455-64. DOI: 10.1118/1.1598711.

Cheng JY, Ning H, Arora BC, et al. Output factor comparison of Monte Carlo and measurement for Varian TrueBeam 6 MV and 10 MV flattening filter-free stereotactic radiosurgery system. J Appl Clin Med Phys. 2016; 17(3): 100-10. DOI: 10.1120/jacmp.v17i3.5956.

Teke T, Duzenli C, Bergman A, et al. Monte Carlo validation of the TrueBeam 10XFFF phase–space files for applications in lung SABR. Med Phys. 2015; 42(12): 6863-74. DOI: 10.1118/1.4935144.

Tzedakis A, Damilakis JE, Mazonakis M, et al. Influence of initial electron beam parameters on Monte Carlo calculated absorbed dose distributions for radiotherapy photon beams. Med Phys. 2004; 31(4): 907-13. DOI: 10.1118/1.1668551.

Glide-Hurst C, Bellon M, Foster R, et al. Commissioning of the Varian TrueBeam linear accelerator: A multi-institutional study. Med Phys. 2013; 40(3): 031719. DOI: 10.1118/1.4790563.

Beyer GP. Commissioning measurements for photon beam data on three TrueBeam linear accelerators, and comparison with Trilogy and Clinac 2100 linear accelerators. J Appl Clin Med Phys. 2013; 14(1): 4077. DOI: 10.1120/jacmp.v14i1.4077.

Chang Z, Wu Q, Adamson J, Ren L, et al. Commissioning and dosimetric characteristics of TrueBeam system: composite data of three TrueBeam machines. Med Phys. 2012; 39(11): 6981-7018. DOI: 10.1118/1.4762682.

Mamesa S, Oonsiri S, Sanghangthum T, et al. The impact of corrected field output factors based on IAEA/AAPM code of practice on small-field dosimetry to the calculated monitor unit in eclipse™ treatment planning system. J Appl Clin Med Phys. 2020; 21(5): 65-75. DOI: 10.1002/acm2.12855.

Chang K-H, Lee B-R, Kim Y-H, et al. Dosimetric Characteristics of Edge Detector(TM) in Small Beam Dosimetry. Korean J Med Phys. 2009; 20: 191-8.

Cranmer-Sargison G, Charles PH, Trapp JV,et al. A methodological approach to reporting corrected small field relative outputs. Radiother Oncol. 2013; 109(3): 350-5. DOI: https://doi.org/10.1016/j.radonc.2013.10.002.

Francescon P, Beddar S, Satariano N, et al. Variation of kQclin,Qmsrfclin,fmsr for the small-field dosimetric parameters percentage depth dose, tissue-maximum ratio, and off-axis ratio. Med Phys. 2014; 41(10): 101708. DOI: 10.1118/1.4895978.

Papaconstadopoulos P, Tessier F, Seuntjens J. On the correction, perturbation and modification of small field detectors in relative dosimetry. Phys Med Biol. 2014; 59(19): 5937. DOI: 10.1088/0031-9155/59/19/5937.

Dwivedi S, Kansal S, Dangwal VK, et al. Dosimetry of a 6 MV flattening filter-free small photon beam using various detectors. Biomed Phys Eng. 2021; 7(4): 045004. DOI: 10.1088/2057-1976/abfd80.

Akino Y, Fujiwara M, Okamura K, et al. Characterization of a microSilicon diode detector for small-field photon beam dosimetry. J Radiat Res. 2020; 61(3): 410-8. DOI: doi.org/10.1093/jrr/rraa010.

Das IJ, Francescon P, Moran JM, et al. Report of AAPM Task Group 155: Megavoltage photon beam dosimetry in small fields and non‐equilibrium conditions. Med Phys. 2021. DOI: doi.org/10.1002/mp.15030.

Kairn T, Charles PH, Cranmer-Sargison G, et al. Clinical use of diodes and micro-chambers to obtain accurate small field output factor measurements. Australas Phys Eng Sci Med. 2015; 38(2): 357-67. DOI: 10.1007/s13246-015-0334-9.

Azangwe G, Grochowska P, Georg D, et al. Detector to detector corrections: a comprehensive experimental study of detector specific correction factors for beam output measurements for small radiotherapy beams. Med Phys. 2014; 41(7): 072103. DOI: 10.1118/1.4883795.

Liu PZ, Suchowerska N, McKenzie DR. Can small field diode correction factors be applied universally? Radiother Oncol. 2014; 112(3): 442-6. DOI: 10.1016/j.radonc.2014.08.009.

Lechner W, Palmans H, Sölkner L, et al. Detector comparison for small field output factor measurements in flattening filter free photon beams. Radiother Oncol. 2013; 109(3): 356-60.

Smith CL, Montesari A, Oliver CP, et al. Evaluation of the IAEA-TRS 483 protocol for the dosimetry of small fields (square and stereotactic cones) using multiple detectors. J Appl Clin Med Phys. 2020; 21(2): 98-110. DOI: https://doi.org/10.1002/acm2.12792.

Akino Y, Mizuno H, Isono M, et al. Small-field dosimetry of TrueBeam(TM) flattened and flattening filter-free beams: A multi-institutional analysis. J Appl Clin Med Phys. 2020; 21(1): 78-87. DOI: 10.1002/acm2.12791.

Casar B, Gershkevitsh E, Mendez I, et al. A novel method for the determination of field output factors and output correction factors for small static fields for six diodes and a microdiamond detector in megavoltage photon beams. Med Phys. 2019; 46(2): 944-63. DOI: 10.1002/mp.13318.

Tanaka Y, Mizuno H, Akino Y, et al. Do the representative beam data for TrueBeam(™) linear accelerators represent average data? J Appl Clin Med Phys. 2019; 20(2): 51-62. DOI: 10.1002/acm2.12518.