Transcriptomic change of human gingival cells during cultivation on gelatin composite hydroxyapatite and pig brain extract

Main Article Content

Fahsai Kantawong
Yasumin Chaiyasert
Nichanun Bungkhuan
Kanyamas Choocheep
Warunee Kumsaiyai
Penpitcha Wanachantararak
Thasaneeya Kuboki

Abstract

Background: Biomaterials that contain mechanical and biochemical properties similar to neural tissue will provide the environment that support neuronal survival and development.


Objectives: This study assessed the effects of three gelatin-based biomaterials on gene expression of primary human gingival fibroblasts.


Materials and methods: Human gingival cells were cultured on 3 types of biomaterials; 10% gelatin, 10% gelatin with hydroxyapatite and 10% gelatin with hydroxyapatite and pig’s brain extract. These biomaterials were used in cell culture to investigate that they could support long-term culture of adult somatic cells like human gingival cell or not.


Results: Human gingival cells were cultured on biomaterials for 21 days then, RNA sequencing showed up-regulation of 259 genes and down regulation of 210 gene in human gingiva cells cultured on Gel+HA+Brain compared to cells on tissue culture plates. RNA sequencing showed up-regulation of antioxidant genes, solute-carrier gene (SLC) superfamily, histone and cell cycle gene. Down-regulation of ECM and cytoskeletal protein were observed. The further study by reverse transcription real time – PCR was performed to confirm the result of Klf4, Tuj1, OCN, ACAN and VCAN gene expression in human gingival cells. Moreover, some neuronal related genes in human gingiva cells cultured on Gel+HA+Brain compared to cells on tissue culture plates were detected.


Conclusions: The biomaterials (Gel+HA+Brain) affected gene expression in many aspects at 21 days culture. It was possible that 10% gelatin with nano-hydroxyapatite and pig’s brain extract could be used to support cell differentiation of the human gingival cells. In conclusion simple fabrication of the biomaterial from 10% gelatin with nano-hydroxyapatite and pig’s brain extract could be used for modulation of gene expression in adult somatic cells.

Article Details

How to Cite
Kantawong, F., Chaiyasert , Y. ., Bungkhuan, N., Choocheep, K., Kumsaiyai, W., Wanachantararak, P., & Kuboki, T. (2021). Transcriptomic change of human gingival cells during cultivation on gelatin composite hydroxyapatite and pig brain extract. Journal of Associated Medical Sciences, 54(3), 107–124. Retrieved from https://he01.tci-thaijo.org/index.php/bulletinAMS/article/view/250755
Section
Research Articles

References

Xu X, Chen C, Akiyama K, Chai Y, Le AD, Wang Z, et al. Gingivae contain neural-crest- and mesoderm-derived mesenchymal stem cells. J Dent Res. 2013;92(9):825-32. doi: 10.1177/0022034513497961.

Górski B. Gingiva as a new and the most accessible source of mesenchymal stem cells from the oral cavity to be used in regenerative therapies. Postepy Hig Med Dosw (Online). 2016;70(0):858-71.

Gugliandolo A, Diomede F, Scionti D, Bramanti P, Trubiani O, Mazzon E. The Role of Hypoxia on the Neuronal Differentiation of Gingival Mesenchymal Stem Cells: A Transcriptional Study. Cell Transplant. 2019:963689718814470. doi: 10.1177/0963689718814470.

Zhang X, Huang F, Li W, Dang JL, Yuan J, Wang J, et al. Human Gingiva-Derived Mesenchymal Stem Cells Modulate Monocytes/Macrophages and Alleviate Atherosclerosis. Front Immunol. 2018;9:878. doi: 10.3389/fimmu.2018.00878.

Kantawong F, Kuboki T, Kidoaki S. Redox gene expression of adipose-derived stem cells in response to soft hydrogel. Turk J Biol. 2015; 39(5): 682-91.

Kantawong F, Saksiriwisitkul C, Riyapa C, Limpakdee S, Wanachantararak P, Kuboki T. Reprogramming of mouse fibroblasts into neural lineage cells using biomaterials. Bioimpacts. 2018;8(2):129-38. doi: 10.15171/bi.2018.15.

Kantawong F, Tanum J, Wattanutchariya W, Sooksaen P. Variation of Hydroxyapatite Content in Soft Gelatin Affects Mesenchymal Stem Cell Differentiation. Brazilian Archives of Biology and Technology. 2016;59. doi: 10.1590/1678-4324-2016150650.

Lambrichts I, Driesen RB, Dillen Y, Gervois P, Ratajczak J, Vangansewinkel T, et al. Dental Pulp Stem Cells: Their Potential in Reinnervation and Angiogenesis by Using Scaffolds. J Endod. 2017;43(9S):S12-S6. doi: 10.1016/j.joen.2017.06.001.

Spencer ML, Theodosiou M, Noonan DJ. NPDC-1, a novel regulator of neuronal proliferation, is degraded by the ubiquitin/proteasome system through a PEST degradation motif. J Biol Chem. 2004;279(35):37069-78. doi: 10.1074/jbc.M402507200.

Sansal I, Dupont E, Toru D, Evrard C, Rouget P. NPDC-1, a regulator of neural cell proliferation and differentiation, interacts with E2F-1, reduces its binding to DNA and modulates its transcriptional activity. Oncogene. 2000;19(43):5000-9. doi: 10.1038/sj.onc.1203843.

Dupont E, Sansal I, Evrard C, Rouget P. Developmental pattern of expression of NPDC-1 and its interaction with E2F-1 suggest a role in the control of proliferation and differentiation of neural cells. J Neurosci Res. 1998;51(2):257-67. doi: 10.1002/(SICI)1097-4547(19980115)51:2<257::AID-JNR14>3.0.CO;2-5.

Bröer S, Gether U. The solute carrier 6 family of transporters. Br J Pharmacol. 2012;167(2):256-78. doi: 10.1111/j.1476-5381.2012.01975.x.

Kristensen AS, Andersen J, Jørgensen TN, Sørensen L, Eriksen J, Loland CJ, et al. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev. 2011;63(3):585-640. doi: 10.1124/pr.108.000869.

Yang J, Li F, Qiu L, Luo X, Huang H. [Role of LRRN3 in the cerebellum postnatal development in rats]. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2011;36(5):424-9. doi: 10.3969/j.issn.1672-7347.2011.05.009.

Kochunov P, Charlesworth J, Winkler A, Hong LE, Nichols TE, Curran JE, et al. Transcriptomics of cortical gray matter thickness decline during normal aging. Neuroimage. 2013;82:273-83. doi: 10.1016/j.neuroimage.2013.05.066.

Ehling S, Fukuyama T, Ko MC, Olivry T, Bäumer W. Neuromedin B Induces Acute Itch in Mice via the Activation of Peripheral Sensory Neurons. Acta Derm Venereol. 2019. doi: 10.2340/00015555-3143.

Su W, Foster SC, Xing R, Feistel K, Olsen RH, Acevedo SF, et al. CD44 Transmembrane Receptor and Hyaluronan Regulate Adult Hippocampal Neural Stem Cell Quiescence and Differentiation. J Biol Chem. 2017;292(11):4434-45. doi: 10.1074/jbc.M116.774109.

Boyer-Guittaut M, Poillet L, Liang Q, Bôle-Richard E, Ouyang X, Benavides GA, et al. The role of GABARAPL1/GEC1 in autophagic flux and mitochondrial quality control in MDA-MB-436 breast cancer cells. Autophagy. 2014;10(6):986-1003. doi: 10.4161/auto.28390.

Le Grand JN, Bon K, Fraichard A, Zhang J, Jouvenot M, Risold PY, et al. Specific distribution of the autophagic protein GABARAPL1/GEC1 in the developing and adult mouse brain and identification of neuronal populations expressing GABARAPL1/GEC1. PLoS One. 2013;8(5):e63133. doi: 10.1371/journal.pone.0063133.

Schilling S, Mehr A, Ludewig S, Stephan J, Zimmermann M, August A, et al. APLP1 Is a Synaptic Cell Adhesion Molecule, Supporting Maintenance of Dendritic Spines and Basal Synaptic Transmission. J Neurosci. 2017;37(21):5345-65. doi: 10.1523/JNEUROSCI.1875-16.2017.

Carballo-Molina OA, Sánchez-Navarro A, López-Ornelas A, Lara-Rodarte R, Salazar P, Campos-Romo A, et al. Semaphorin 3C Released from a Biocompatible Hydrogel Guides and Promotes Axonal Growth of Rodent and Human Dopaminergic Neurons. Tissue Eng Part A. 2016;22(11-12):850-61. doi: 10.1089/ten.TEA.2016.0008.

Shao J, Sun C, Su L, Zhao J, Zhang S, Miao J. Phosphatidylcholine-specific phospholipase C/heat shock protein 70 (Hsp70)/transcription factor B-cell translocation gene 2 signaling in rat bone marrow stromal cell differentiation to cholinergic neuron-like cells. International Journal of Biochemistry & Cell Biology. 2012;44(12):2253-60. doi: 10.1016/j.biocel.2012.09.013.

Sanchez-Pulido L, Ponting CP. TMEM132: an ancient architecture of cohesin and immunoglobulin domains define a new family of neural adhesion molecules. Bioinformatics. 2018;34(5):721-4. doi: 10.1093/bioinformatics/btx689.

Kameda T, Zvick J, Vuk M, Sadowska A, Tam WK, Leung VY, et al. Expression and Activity of TRPA1 and TRPV1 in the Intervertebral Disc: Association with Inflammation and Matrix Remodeling. Int J Mol Sci. 2019;20(7). doi: 10.3390/ijms20071767.

Förstner P, Rehman R, Anastasiadou S, Haffner-Luntzer M, Sinske D, Ignatius A, et al. Neuroinflammation after Traumatic Brain Injury Is Enhanced in Activating Transcription Factor 3 Mutant Mice. J Neurotrauma. 2018;35(19):2317-29. doi: 10.1089/neu.2017.5593.

Taniguchi H, Mohri I, Okabe-Arahori H, Aritake K, Wada K, Kanekiyo T, et al. Prostaglandin D2 protects neonatal mouse brain from hypoxic ischemic injury. J Neurosci. 2007;27(16):4303-12. doi: 10.1523/JNEUROSCI.0321-07.2007.

Uezu A, Kanak DJ, Bradshaw TW, Soderblom EJ, Catavero CM, Burette AC, et al. Identification of an elaborate complex mediating postsynaptic inhibition. Science. 2016;353(6304):1123-9. doi: 10.1126/science.aag0821.

Fusco G, Pape T, Stephens AD, Mahou P, Costa AR, Kaminski CF, et al. Structural basis of synaptic vesicle assembly promoted by α-synuclein. Nat Commun. 2016;7:12563. doi: 10.1038/ncomms12563.

Farhy-Tselnicker I, van Casteren ACM, Lee A, Chang VT, Aricescu AR, Allen NJ. Astrocyte-Secreted Glypican 4 Regulates Release of Neuronal Pentraxin 1 from Axons to Induce Functional Synapse Formation. Neuron. 2017;96(2):428-45.e13. doi: 10.1016/j.neuron.2017.09.053.

Lee SJ, Wei M, Zhang C, Maxeiner S, Pak C, Calado Botelho S, et al. Presynaptic Neuronal Pentraxin Receptor Organizes Excitatory and Inhibitory Synapses. J Neurosci. 2017;37(5):1062-80. doi: 10.1523/JNEUROSCI.2768-16.2016.

Bobba A, Casalino E, Petragallo VA, Atlante A. Thioredoxin/thioredoxin reductase system involvement in cerebellar granule cell apoptosis. Apoptosis. 2014;19(10):1497-508. doi: 10.1007/s10495-014-1023-y.

Arodin L, Miranda-Vizuete A, Swoboda P, Fernandes AP. Protective effects of the thioredoxin and glutaredoxin systems in dopamine-induced cell death. Free Radic Biol Med. 2014;73:328-36. doi: 10.1016/j.freeradbiomed.2014.05.011.

Townsend DM, Tew KD. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene. 2003;22(47):7369-75. doi: 10.1038/sj.onc.1206940.

Chung SS, Kim M, Youn BS, Lee NS, Park JW, Lee IK, et al. Glutathione peroxidase 3 mediates the antioxidant effect of peroxisome proliferator-activated receptor gamma in human skeletal muscle cells. Mol Cell Biol. 2009;29(1):20-30. doi: 10.1128/MCB.00544-08.

Kurat C, Lambert J, Petschnigg J, Friesen H, Pawson T, Rosebrock A, et al. Cell cycle-regulated oscillator coordinates core histone gene transcription through histone acetylation. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(39):14124-9. doi: 10.1073/pnas.1414024111.

Mei Q, Huang J, Chen W, Tang J, Xu C, Yu Q, et al. Regulation of DNA replication-coupled histone gene expression. Oncotarget. 2017;8(55):95005-22. doi: 10.18632/oncotarget.21887.

Feser J, Truong D, Das C, Carson JJ, Kieft J, Harkness T, et al. Elevated histone expression promotes life span extension. Mol Cell. 2010;39(5):724-35. doi: 10.1016/j.molcel.2010.08.015.

Ouellet S, Vigneault F, Lessard M, Leclerc S, Drouin R, Guérin SL. Transcriptional regulation of the cyclin-dependent kinase inhibitor 1A (p21) gene by NFI in proliferating human cells. Nucleic Acids Res. 2006;34(22):6472-87. doi: 10.1093/nar/gkl861.

Kim MK, Jeon BN, Koh DI, Kim KS, Park SY, Yun CO, et al. Regulation of the cyclin-dependent kinase inhibitor 1A gene (CDKN1A) by the repressor BOZF1 through inhibition of p53 acetylation and transcription factor Sp1 binding. J Biol Chem. 2013;288(10):7053-64. doi: 10.1074/jbc.M112.416297.

McNeal AS, Liu K, Nakhate V, Natale CA, Duperret EK, Capell BC, et al. CDKN2B Loss Promotes Progression from Benign Melanocytic Nevus to Melanoma. Cancer Discov. 2015;5(10):1072-85. doi: 10.1158/2159-8290.CD-15-0196.

Tschen SI, Zeng C, Field L, Dhawan S, Bhushan A, Georgia S. Cyclin D2 is sufficient to drive β cell self-renewal and regeneration. Cell Cycle. 2017;16(22):2183-91. doi: 10.1080/15384101.2017.1319999.

Wang S, Chen B, Zhu Z, Zhang L, Zeng J, Xu G, et al. CDC20 overexpression leads to poor prognosis in solid tumors A system review and meta-analysis. Medicine. 2018;97(52). doi: 10.1097/MD.0000000000013832.

Kim G, Lee I, Kim J, Hwang D. The Replication Protein Cdc6 Suppresses Centrosome Over-Duplication in a Manner Independent of Its ATPase Activity. Molecules and Cells. 2017;40(12):925-34. doi: 10.14348/molcells.2017.0191.

Simic MS, Dillin A. The Lysosome, Elixir of Neural Stem Cell Youth. Cell Stem Cell. 2018;22(5):619-20. doi: 10.1016/j.stem.2018.04.017.

Frese CK, Mikhaylova M, Stucchi R, Gautier V, Liu Q, Mohammed S, et al. Quantitative Map of Proteome Dynamics during Neuronal Differentiation. Cell Rep. 2017;18(6):1527-42. doi: 10.1016/j.celrep.2017.01.025.

Lacy P. Editorial: secretion of cytokines and chemokines by innate immune cells. Front Immunol. 2015;6:190. doi: 10.3389/fimmu.2015.00190.

Levin R, Grinstein S, Canton J. The life cycle of phagosomes: formation, maturation, and resolution. Immunol Rev. 2016;273(1):156-79. doi: 10.1111/imr.12439.

Miyata S, Mori Y, Tohyama M. PRMT1 and Btg2 regulates neurite outgrowth of Neuro2a cells. Neuroscience Letters. 2008;445(2):162-5. doi: 10.1016/j.neulet.2008.08.065.

Oh-hashi K, Imai K, Koga H, Hirata Y, Kiuchi K. Knockdown of transmembrane protein 132A by RNA interference facilitates serum starvation-induced cell death in Neuro2a cells. Mol Cell Biochem. 2010;342(1-2):117-23. doi: 10.1007/s11010-010-0475-9.

Lin L, Yee S, Kim R, Giacomini K. SLC transporters as therapeutic targets: emerging opportunities. Nature Reviews Drug Discovery. 2015;14(8):543-60. doi: 10.1038/nrd4626.