Association between particulate matter with diameter of less than 2.5 micron with acute exacerbation of chronic obstructive pulmonary disease in Chaiprakarn District, Chiang Mai Province
Main Article Content
Abstract
This research is a cross-sectional descriptive study. The objective of this study was to study the relationship of particulate matter with diameter of less than 2.5 micron (PM 2.5) with Acute Exacerbation of Chronic Obstructive Pulmonary Disease (AECOPD) in Chaiprakarn district, Chiang MaiProvince. Data collection uses electronic data collection for historical data collection. The results showed that PM 2.5 had an effect on AECOPD over three seasons. This study found AECOPD in summer season were associated with particulate matter with diameter of less than 10 micron (PM 10) (p-value = 0.001), PM2.5 (p-value< 0.001), and cigarette smoke (p-value = 0.026). In the rainy season, it was found that AECOPD was related to PM 2.5 (p-value = 0.044). Patients who had AECOPD in the winter seasonwere related to PM 2.5 (p-value = 0.034). In conclusion, PM 2.5 affects AECOPD in all three seasons in Chaiprakarn district, Chiang Mai Province.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
World Health Organization (WHO). Chronic obstructive pulmonary disease (COPD) (Internet). Available from: https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd)
รายงานผู้ป่วยโรคปอดอุดกั้นเรื้อรังประจำปี 2562. โรงพยาบาลไชยปราการ อำเภอไชยปราการ จังหวัดเชียงใหม่. 2562.
Korsbaek N, Landt EM, Dahl M. Second-hand smoke exposure associated with risk of respiratory symptoms, asthma, and copd in 20,421 adults from the general population. J Asthma Allergy. 2021;14:1277-84.
Australian Institute of Health and Welfare 2020.Chronic obstructive pulmonary disease (COPD), associated comorbidities and risk factors.2021. Available from: https://www.aihw.gov.au/reports/chronic-respiratory-conditions/copd-associatedcomorbidities-risk-factors
Viniol C, Vogelmeier CF. Exacerbations of COPD. Eur Respir Rev. 2018;27(147):170103.
Rodthong W, Rattanachotpanit T, Limwattananon S, Limwattananon C, Lertsinudom S, Boonsawat W. Cost of illness for chronic obstructive pulmonary disease. IJPS. 2015; 11(Suppl.):151-8.
Nikam J, Archer D, Nopsert C. Air Quality in Thailand: Understanding the regulatory context. SEI Working Paper. Stockholm Environment Institute. 2021. Available from: https://www.sei.org/publications/air-quality-thailand-regulatory-context/
Xing YF, Xu YH, Shi MH, Lian YX. The impact of PM2.5 on the human respiratory system. J Thorac Dis. 2016;8:E69-74.
Bo Y, Chang L, Guo C, Lin C, Lau AKH, Tam T, et al. Reduced ambient PM2.5, better lung function, and decreased risk of chronic obstructive pulmonary disease. Environ Int. 2021;156:106706.
Zhu R-X, Nie X-H, Chen Y-H, Chen J, Wu S-W, Zhao L-H. Relationship between particulate matter (pm2.5) and hospitalizations and mortality of chronic obstructive pulmonary disease patients: a meta-analysis. Am J Med Sci. 2020;359(6):354-64.
Zhao J, Li M, Wang Z, Chen J, Zhao J, Xu Y, et al. Role of PM2.5 in the development and progression of COPD and its mechanisms. Respir Res. 2019;20:120.
Wen CP, Gao W. PM2.5: an important cause for chronic obstructive pulmonary disease? Lancet Planet Health.2018;2(3):e105-6.
Ting M-J, Tsai Y-H, Chuang S-P, Wang P-H, Cheng S-L. Is PM2.5 associated with emergency department visits for mechanical ventilation in acute exacerbation of chronic obstructive pulmonary disease? Am J Emerg Med. 2021;50:566-73.
Pipatvech K. Aupachak S. Relationship between PM2.5 dust exposure and exacerbation of chronic obstructive pulmonary disease patients. J Health Sci. 2021;30(4):645-53.
Pothirat C, Chaiwong W, Liwsrisakun C, Bumroongkit C, Deesomchok A, Theerakittikul T, et al. Influence of particulate matter during seasonal smog on quality of life and lung function in patients with chronic obstructive pulmonary disease. Int J Environ Res Public Health. 2019; 16(1):106.
Junhasavasdikul B, Wanikiat P, Krobthong A, Chaiyasit K. Health effects of ambient air PM2.5, pathogenesis and alternative medicine treatment. J Thai Trad Alt Med. 2020;18:187-202.
Ryu YS, Kang KA, Piao MJ, Ahn MJ, Yi JM, Hyun YM, et al. Particulate matter induces inflammatory cytokine production via activation of NFκBbyTLR5-NOX4 ROS signaling in human skin keratinocyte and mouse skin. Redox Biol. 2019;12:101080.
Hong Z, Guo Z, Zhang R, Xu J, Dong W, Zhuang G, et al. Airborne fine particulate matter induces oxidative stress and inflammation in human nasal epithelial cells. Tohoku J Exp Med. 2016;239:117-25.
Wu JZ, Ge DD, Zhou LF, Hou LY, Zhou Y, Li QY. Effects of particulate matter on allergic respiratory diseases. Chronic Dis Transl Med. 2018; 4:95-102.
Ozturk AB, Bayraktur R, Gogebakan B, Mumbuc S, Bayram H. Comparision of inflammatory cytokine release from nasal epithelial cells of non-atopic non rhinitic, allergic rhinitic and polyp subjects and effects of diesel exhaust particles in vitro. Allergol Immunopathol. 2017;45:473-81.
Alexis NE, Huang YC, Rappold AG, Kehrl H, DevlinR, Peden DB. Patients with asthma demonstrate airway inflammation after exposure to concentrated ambient particulate matter. Am J Respir Crit Care Med. 2014;190:235-7.
Chan RC, Wang M, Li N, Yanagawa Y, Onoe K, Lee JJ, et al. Pro-oxidative diesel exhaust particle chemicals inhibit LPS-induced dendritic cells responses involved in T-helper differentiation. J Allergy Clin Immunol. 2006;118:455-65.
Brandt EB, Bolcas P, Ruff B, Hershey GKK. Il-33 aignaling contributes to diesel exhaust particles (DEP)-induced asthma exacerbatiobs and recall reponses. J Allergy ClinImmunol. 2017;139: AB81.
Becker S, Mundandhara S, Devlin RB, Madden M. Regulation of cytokine production in human alveolar macrophages and airway epithelial cells in response to ambient air pollution particles: further mechanistic studies. Toxicol Appl Pharmacol. 2005:207:269-75.
Deng X, Rui W, Zhang F, Ding W. PM2.5 induces Nrf2 –mediated defense mechanisms against oxidative stress by activatingPIK3/AKT signaling pathway in human lung alveolar epithelial A549 cells. Cell Biol Toxicol. 2013;29:143-57.
Deng X, Zhang F, Wang L, Rui W, long F, Zhao Y, et al. Airborne fine particulate matter induces multiple cell death pathways in human lung epithelial cells. Apoptosis. 2014; 19:1099-112.
Wang YH, Lin ZY, Yang LW. PM2.5 exacerbate allergic asthma involved in autophagy signaling pathway in mice. Int J Clin Exp Pathol. 2016;9:12247-61.
Jeensorn T, Apichartwiwat P, Jinsart W. PM10 and PM2.5 from haze smog and visibility effect in Chiang Mai province Thailand. Appl Environ Res. 2018;40(3):1–10.
Chujit W, Wiwatanadate P, Deesomchok A, Sopajaree K, Eldeirawi K, Tsai YI. Air pollution levels related to peak expiratory flow rates among adult asthmatics in Lampang, Thailand. Aerosol Air Qual Res. 2020;20:1398–410.
Jo YS, Lim MN, Han YJ, Kim WJ. Epidemiological study of PM2.5 and risk of COPD-related hospital visits in association with particle constituents in Chuncheon, Korea. Int J Chron Obstruct Pulmon Dis. 2018;12(13):299-307.
ศุทธินี ดนตรี, ทิพวรรณ ประภามณฑล, สมพร จันทระ, ลิวา ผาดไธสง-ชัยพานิช. หมอกควันในภาคเหนือ ความรุนแรง ผลกระทบ สาเหตุและแนวทางการแก้ไข. ชุดโครงการวิจัยเพื่อพัฒนานโยบายและขับเคลื่อนระบบสุขภาพและสิ่งแวดล้อมระยะที่ 2. สถาบันวิจัยระบบสาธารณสุข มิถุนายน 2555.
รายงานกลุ่มงานอนามัยสิ่งแวดล้อม. สำนักงานสาธารณสุขจังหวัดเชียงใหม่ จังหวัดเชียงใหม่. 2565.
คณะกรรมาธิการการทรัพยากรธรรมชาติและสิ่งแวดล้อม สภานิติบัญญัติแห่งชาติ. รายงานการพิจารณาศึกษา เรื่อง แนวทางการแก้ไขปัญหาหมอกควัน. 2560. ค้นหาจาก: https://www.senate.go.th/document/Ext16971/16971489_0002.PDF
กรมประชาสัมพันธ์. รัฐมนตรีว่าการกระทรวงมหาดไทย สั่งการทุกจังหวัดบูรณาการป้องกันและแก้ไขฝุ่นละอองขนาดเล็ก PM2.5 และไฟป่าในพื้นที่ภาคเหนืออย่างเป็นระบบ. 2563 ค้นหาจาก: https://www.prd.go.th/th/content/category/detail/id/39/iid/5881,%20
ประชาไท. หมอกควัน (3): มายาคติ PM2.5 ภาคเหนือกับการแก้ไขปัญหาแบบ ‘ลองผิดลองถูก’. 2564. ค้นหาจาก: https://prachatai.com/journal/2021/02/91906#:~:text=%E0%B8%95%E0%B9%88%E0%B8%AD%E0%B8%A1%E0%B8%B2%E0%B9%83%E0%B8%99%E0%B8%A7%E0%B8%B1%E0%B8%99%E0%B8%97%E0%B8%B5%E0%B9%88,25%2C000%20%E0%B8%9A%E0%B8%B2%E0%B8%97%20%E0%B8%AB%E0%B8%A3%E0%B8%B7%E0%B8%AD%E0%B8%97%E0%B8%B1%E0%B9%89%E0%B8%87%E0%B8%88%E0%B8%B3
แผนพัฒนาท้องถิ่นองค์การบริหารส่วนจังหวัดเชียงใหม่ (2561-2565). การป้องกันและลดผลกระทบจากกรณีค่าฝุ่นละอองขนาดเล็ก (PM2.5) ค้นหาจาก: https://chiangmaipao.go.th/cmpao/upload/66171646813522.pdf
Ni Y, Shi G, Qu J. Indoor PM2.5, tobacco smoking and chronic lung diseases: A narrative review. Environ Res. 2020;181:108910.
Gerber A, Hofen-Hohloch AV, Schulze J, Groneberg DA. Tobacco smoke particles and indoor air quality (ToPIQ-II) – a modified study protocol and first results. J Occup Med Toxicol. 2015; 10:5.
Li N, Ma J, Ji K, Wang L. Association of PM2.5 and PM10 with acute exacerbation of chronic obstructive pulmonary disease at lag0 to lag7: a systematic review and meta-analysis. COPD. 2022;19(1):243-54.
Ding Q, Li J, Xu S, Gao Y, Guo Y, Xie B, et al. Different smoking statuses on survival and emphysema in patients with acute exacerbation of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2022;17:505-15.
Mankan W. The causing factors of the smog phenomenon in Lampang Basin. BUSCIJ. 2017;22(1):226-39.
Ni-orn S, Kongvee S. Study on the effective factors to maize cultivation in hilly area. A case study in Wawee sub-district, Mae-Sruai district, Chiang Rai province. FEU Academic Review. 2014;8(1):163-71.
Kwanma P, Pukngam S, Arunpraparu W. Meteorological factors affecting concentration of PM10 at Na Phra Lan sub-district, Chaloem Phra Kiat district, Saraburi province. PSRU J Sci Tech. 2019;4:85-94.
Tseng CM, Chen YT, Ou SM, Hsiao YH, Li SY, Wang SJ, et al. The effect of cold temperature on increased exacerbation of chronic obstructive pulmonary disease: a nationwide study. PLoS One. 2013;8:e57066.
Zhang Y, Liu X, Kong D, Fu J, Liu Y, Zhao Y, et al. Effects of ambient temperature on acute exacerbations of chronic obstructive pulmonary disease: results from a time-series analysis of 143318 Hospitalizations. Int J Chron Obstruct Pulmon Dis. 2020;15:213-23.