ปัญญาประดิษฐ์ในโรคไต: ความก้าวหน้า โอกาส และข้อกังวลในการฟอกเลือดด้วยเครื่องไตเทียม

Main Article Content

ณฐพุฒิ บุญวิสุทธิ์
ขจร ตีรณธนากุล

บทคัดย่อ

ปัญญาประดิษฐ์เป็นสาขาทางวิทยาศาสตร์ที่มีการพัฒนาอย่างรวดเร็ว อย่างยิ่งในช่วงสิบปีที่ผ่านมา และเข้ามามีบทบาทในศาสตร์สาขาต่างๆ รวมถึงทางการแพทย์ ความก้าวหน้าในเทคโนโลยีนี้ได้แสดงให้เห็นถึง ศักยภาพในการปรับปรุงความแม่นยำในการวินิจฉัย ผลการรักษา ก่อให้ เกิดประโยชน์ต่อทั้งผู้ป่วยและแพทย์ผู้ดูแล รวมไปถึงความคุ้มค่าต่อผู้ ประกอบการ บทความนี้จะทำให้ผู้อ่านได้ทำความเข้าใจกับคำศัพท์ต่างๆ ที่เกี่ยวข้องกับปัญญาประดิษฐ์และระบบการเรียนรู้ต่างๆ จากนั้นกล่าวถึง ประโยชน์และข้อจำกัดของปัญญาประดิษฐ์ในทางการแพทย์ และจะลง รายละเอียดถึงการประยุกต์ใช้เทคโนโลยีนี้กับสาขาอายุรศาสตร์โรคไต ซึ่งได้แสดงศักยภาพที่โดดเด่นผ่านระบบสนับสนุนการตัดสินใจทาง คลินิก โดยเฉพาะอย่างยิ่งการนำไปใช้กับการบำบัดทดแทนไตด้วยการ ฟอกเลือดด้วยเครื่องไตเทียม ในปัจจุบันเทคโนโลยีนี้ถูกนำมาใช้ใน หลายแง่มุมที่เกี่ยวกับการฟอกเลือด ไม่ว่าจะเป็นการจัดการกับภาวะ โลหิตจาง การวางแผนและกำหนดนโยบายของศูนย์ฟอกเลือด การ ประเมินเส้นฟอกเลือด การทำนายน้ำหนักแห้ง การทำนายภาวะ แทรกซ้อนขณะฟอกเลือด การจัดการกับความผิดปกติของสมดุลแร่ธาตุ และกระดูก การทำนายการเกิดโรคหลอดเลือดหัวใจหรือการเสียชีวิต และสุดท้ายคือการประเมินการรู้ ความเข้าใจของผู้ป่วย บทความนี้จึงมี เป้าหมายให้ผู้อ่านมีความเข้าใจเบื้องต้นเกี่ยวกับปัญญาประดิษฐ์ และ ศักยภาพในการเปลี่ยนแปลงแนวทางปฏิบัติของโรคไตในอนาคต 

Article Details

รูปแบบการอ้างอิง
บุญวิสุทธิ์ ณ., & ตีรณธนากุล ข. . (2024). ปัญญาประดิษฐ์ในโรคไต: ความก้าวหน้า โอกาส และข้อกังวลในการฟอกเลือดด้วยเครื่องไตเทียม. วารสารสมาคมโรคไตแห่งประเทศไทย, 30(3), 168–184. สืบค้น จาก https://he01.tci-thaijo.org/index.php/JNST/article/view/271559
ประเภทบทความ
Review Article

เอกสารอ้างอิง

Amisha, Malik P, Pathania M, Rathaur VK. Overview of artificial intelligence in medicine. J Family Med Prim Care. 2019;8(7):2328-31.

Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. Imagenet large scale visual recognition challenge. Int J Comput Vis. 2015;115(3):211-52.

Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci. 1997;55(1):119-39.

Breiman L. Random forests. Machine learning. 2001;45:5-32.

Vapnik VN. A note on one class of perceptrons. Automat Rem Control. 1964;25:821-37.

Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural computation. 2006;18(7):1527-54.

Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323(6088):533-6.

LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE. 1998;86(11):2278-324.

Bae TW, Kim MS, Park JW, Kwon KK, Kim KH. Multilayer Perceptron-Based Real-Time Intradialytic Hypotension Prediction Using Patient Baseline Information and Heart-Rate Variation. Int J Environ Res Public Health. 2022;19(16):10373

Cicalese PA, Mobiny A, Shahmoradi Z, Yi X, Mohan C, Van Nguyen H. Kidney Level Lupus Nephritis Classification Using Uncertainty Guided Bayesian Convolutional Neural Networks. IEEE J Biomed Health Inform. 2021;25(2):315-24.

Guo Y, Ma J, Xiao L, Fang J, Li G, Zhang L, et al. Identification of key pathways and genes in different types of chronic kidney disease based on WGCNA. Mol Med Rep. 2019;20(3):2245-57.

Cao Y, Wang R, Zhang H, Zhai P, Wei J. Genetic Variants in MIR3142HG Contribute to the Predisposition of IgA Nephropathy in a Chinese Han Population. Public Health Genomics. 2022;25(5-6):209-19.

Martín-Guerrero JD, Gomez F, Soria-Olivas E, Schmidhuber J, Climente-Martí M, Jiménez-Torres NV. A reinforcement learning approach for individualizing erythropoietin dosages in hemodialysis patients. Expert Syst App. 2009;36(6):9737-42.

Vollmer S, Mateen BA, Bohner G, Király FJ, Ghani R, Jonsson P, et al. Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness. BMJ. 2020;368: l6927

Bartlett R, Morse A, Stanton R, Wallace N. Consumer-lending discrimination in the FinTech era. J Financ Econ. 2022;143(1):30-56.

Uehlinger DE, Gotch FA, Sheiner LB. A pharmacodynamic model of erythropoietin therapy for uremic anemia. Clin Pharmacol Ther. 1992;51(1):76-89.

Martin-Guerrero JD, Camps-Valls G, Soria-Olivas E, Serrano-Lopez AJ, Perez-Ruixo JJ, Jimenez-Torres NV. Dosage individualization of erythropoietin using a profile-dependent support vector regression. IEEE Trans Biomed Eng. 2003;50(10):1136-42.

Barbieri C, Molina M, Ponce P, Tothova M, Cattinelli I, Ion Titapiccolo J, et al. An international observational study suggests that artificial intelligence for clinical decision support optimizes anemia management in hemodialysis patients. Kidney Int. 2016;90(2):422-9.

Krackov W, Sor M, Razdan R, Zheng H, Kotanko P. Artificial Intelligence Methods for Rapid Vascular Access Aneurysm Classification in Remote or In-Person Settings. Blood Purif. 2021;50(4-5):636-41.

Peralta R, Garbelli M, Bellocchio F, Ponce P, Stuard S, Lodigiani M, et al. Development and Validation of a Machine Learning Model Predicting Arteriovenous Fistula Failure in a Large Network of Dialysis Clinics. Int J Environ Res Public Health. 2021;18(23):12355

Chao PC, Chiang PY, Kao YH, Tu TY, Yang CY, Tarng DC, et al. A Portable, Wireless Photoplethysomography Sensor for Assessing Health of Arteriovenous Fistula Using Class-Weighted Support Vector Machine. Sensors (Basel). 2018;18(11):3854

Niel O, Bastard P, Boussard C, Hogan J, Kwon T, Deschênes G. Artificial intelligence outperforms experienced nephrologists to assess dry weight in pediatric patients on chronic hemodialysis. Pediatric Nephrol. 2018;33:1799-803.

Guo X, Zhou W, Yu Y, Cai Y, Zhang Y, Du A, et al. Multiple Laplacian Regularized RBF neural network for assessing dry weight of patients with end-stage renal disease. Front Physiol. 2021;12:2240.

Liu YS, Yang CY, Chiu PF, Lin HC, Lo CC, Lai AS, et al. Machine Learning Analysis of Time-Dependent Features for Predicting Adverse Events During Hemodialysis Therapy: Model Development and Validation Study. J Med Internet Res. 2021;23(9):e27098.

Thakur SS, Abdul SS, Chiu HS, Roy RB, Huang PY, Malwade S, et al. Artificial-Intelligence-Based Prediction of Clinical Events among Hemodialysis Patients Using Non-Contact Sensor Data. Sensors (Basel). 2018;18(9):2833

Wang YF, Hu TM, Wu CC, Yu FC, Fu CM, Lin SH, et al. Prediction of target range of intact parathyroid hormone in hemodialysis patients with artificial neural network. Comput Methods Programs Biomed. 2006;83(2):111-9.

Sluyter JD, Raita Y, Hasegawa K, Reid IR, Scragg R, Camargo CA. Prediction of vitamin D deficiency in older adults: the role of machine learning models. J Clin Endocrinol Metab 2022;107(10):2737-47.

Rankin S, Han L, Scherzer R, Tenney S, Keating M, Genberg K, et al. A Machine Learning Model for Predicting Mortality within 90 Days of Dialysis Initiation. Kidney360. 2022;3(9):1556-65.

Gotta V, Tancev G, Marsenic O, Vogt JE, Pfister M. Identifying key predictors of mortality in young patients on chronic haemodialysis-a machine learning approach. Nephrol Dial Transplant. 2021;36(3):519-28.

Mezzatesta S, Torino C, Meo P, Fiumara G, Vilasi A. A machine learning-based approach for predicting the outbreak of cardiovascular diseases in patients on dialysis. Comput Methods Programs Biomed. 2019;177:9-15.

de Gonzalo-Calvo D, Martinez-Camblor P, Bar C, Duarte K, Girerd N, Fellstrom B, et al. Improved cardiovascular risk prediction in patients with end-stage renal disease on hemodialysis using machine learning modeling and circulating microribonucleic acids. Theranostics. 2020;10(19):8665-76.

NVIDIA. Real-time Analysis of Massive Continuous Data from a Dialysis Machine to Predict Heart Failure Risk with New Edge AI Platform with NVIDIA: NVIDIA On-Demand; 2022 [Available from: https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41707/.

O’Lone E, Connors M, Masson P, Wu S, Kelly PJ, Gillespie D, et al. Cognition in People With End-Stage Kidney Disease Treated With Hemodialysis: A Systematic Review and Meta-analysis. Am J Kidney Dis. 2016;67(6):925-35.

Olczyk P, Kusztal M, Golebiowski T, Letachowicz K, Krajewska M. Cognitive Impairment in End Stage Renal Disease Patients Undergoing Hemodialysis: Markers and Risk Factors. Int J Environ Res Public Health. 2022;19(4):2389

Zhang Y, Sheng Q, Fu X, Shi H, Jiao Z. Integrated Prediction Framework for Clinical Scores of Cognitive Functions in ESRD Patients. Comput Intell Neurosci. 2022;2022:8124053.