The study of Pyrazinamide resistance in Mycobacterium tuberculosis isolates from high-risk groups at Office of Disease Prevention and Control 3 Nakhonsawan between fiscal year 2016 to 2018

Main Article Content

วีรลักษณ์ สายต่างใจ
สมวรรณ แก้วแสงทองเจริญ
อนุกูล บุญคง

Abstract

Pyrazinamide (PZA) is an important anti-tuberculosis drug and has been used in the standard anti-tuberculosis drug for the new drug-susceptible cases, including a shorter regimen for multidrug-resistant tuberculosis (MDR-TB) treatment. PZA susceptibility testing has not been tested extensively. Because of the high rate of PZA resistance in MDR-TB and a few data of PZA resistance in Thailand, this study aimed to determine the rate of PZA resistance in three high-risk groups of tuberculosis (TB) patients consists of re-treatment, on-treatment, and pre-treatment. 371 of high-risk group samples were performed drug susceptibility testing in the tuberculosis laboratory of the Office of Disease Prevention and Control 3rd, Nakhon Sawan Province, during the fiscal year 2016 to 2018. The highest rate of PZA resistance is the on-treatment group (15.9%) followed by the re-treatment group (11.0%) and pre-treatment group (8.2%), respectively but there were no statistically significant differences (P-value = 0.186). The rates of PZA resistance were found in 32.4% of MDR-TB isolates and 6.6% of pan-susceptible isolates. Comparison of drug susceptibility testing results of PZA and other four first-line anti-tuberculosis drugs i.e., streptomycin (SM), isoniazid (INH), rifampicin (RIF), and ethambutol (EMB) showed statistically significant differences. The highest rate of PZA resistance was 80.0% that found in EMB resistance isolates while PZA resistance rates of SM, INH, and RIF resistance isolates were 28.9%, 28.6%, and 27.4%, respectively. PZA susceptibility testing should be performed in three high-risk groups especially the on-treatment groups because the percentage of MDR-TB and the PZA resistance rate of this group were high. The results of drug susceptibility testing are useful to select an appropriate regimen for the treatment of TB patients that will affect the treatment success rate.

Article Details

How to Cite
1.
สายต่างใจ ว, แก้วแสงทองเจริญ ส, บุญคง อ. The study of Pyrazinamide resistance in Mycobacterium tuberculosis isolates from high-risk groups at Office of Disease Prevention and Control 3 Nakhonsawan between fiscal year 2016 to 2018. JDPC3 [Internet]. 2021 Jan. 13 [cited 2024 Nov. 22];14(3):56-68. Available from: https://he01.tci-thaijo.org/index.php/JDPC3/article/view/244452
Section
OriginalArticle

References

1. World Health Organization. Global tuberculosis report 2019. Geneva, Switzerland: WHO; 2019.
2. World Health Organization. Guidelines for treatment of drug-susceptible tuberculosis and patient care. Geneva, Switzerland: WHO; 2017.
3. สำนักวัณโรค กรมควบคุมโรค. แนวทางการรักษาผู้ป่วยวัณโรคดื้อยาหลายขนาน ด้วยสูตรยาระยะสั้น 9 เดือน. กรุงเทพฯ: สำนักพิมพ์อักษรกราฟฟิคแอนด์ดีไซน์; 2561.
4. สำนักวัณโรค กรมควบคุมโรค. แนวทางการบริหารจัดการผู้ป่วยวัณโรคดื้อยา. กรุงเทพฯ: โรงพิมพ์ชุมนุมสหกรณ์การเกษตรแห่งประเทศไทย; 2558.
5. World Health Organization. WHO consolidated guidelines on drug-resistant tuberculosis treatment. Geneva, Switzerland: WHO; 2019.
6. Miotto P, Cabibbe AM, Feuerriegel S, Casali N, Drobniewski F, Rodionova Y, et al. Mycobacterium tuberculosis pyrazinamide resistance determinants: a multicenter study. mBio 2014;5(5):e01819-14.
7. Aung WW, Ei PW, Nyunt WW, Htwe MM, Win SM, Aye KT, et al. Pyrazinamide resistance among multidrug-resistant Mycobacterium tuberculosis clinical isolates in Myanmar. Antimicrob Agents Chemother 2018;62:e01984-17.
8. , Syre H, Valvatne H, Stavrum R, Mannsåker T, Muthivhi T, et al. Pyrazinamide resistance among South African multidrug-resistant Mycobacterium tuberculosis isolates. J Clin Microbiol 2008;46(10):3459-64.
9. Ando H, Mitarai S, Kondo Y, Suetake T, Sekiguchi JI, Kato S, et al. Pyrazinamide resistance in multidrug-resistant Mycobacterium tuberculosis isolates in Japan. Clin Microbiol Infect 2010;16(8):1164-8.
10. Jonmalung J, Prammananan T, Leechawengwongs M, Chaiprasert A. Surveillance of pyrazinamide susceptibility among multidrug-resistant Mycobacterium tuberculosis isolates from Siriraj Hospital, Thailand. BMC Microbiology 2010;10:223.
11. Franklin, Jameelah A. Characterization of Pyrazinamide mono-resistant strains of Mycobacterium tuberculosis complex isolates submitted to centers for disease control from United States public health laboratories for drug susceptibility testing. ETD Collection for AUC Robert W. Woodruff Library; 2011:198.
12. Hannan MM, Desmond EP, Morlock GP, Mazurek GH, Crawford JT. Pyrazinamide-monoresistant Mycobacterium tuberculosis in the United States. J Clin Microbiol 2001;39(2):647-50.
13. de Jong BC, Onipede A, Pym AS, Gagneux S, Aga RS, DeRiemer K, Small PM. Does resistance to pyrazinamide accurately indicate the presence of Mycobacterium bovis?. J Clin Microbiol 2005;43(7):3530-2.
14. Raynaud C, Lanéelle MA, Senaratne RH, Draper P, Lanéelle G, Daffé M. Mechanisms of pyrazinamide resistance in mycobacteria: importance of lack of uptake in addition to lack of pyrazinamidase activity. Microbiology 1999;145:1359-67.
15. Singh A, Somvanshi P, Grover A. Pyrazinamide drug resistance in RpsA mutant (∆438A) of Mycobacterium tuberculosis: dynamics of essential motions and free-energy landscape analysis. J Cell Biochem 2018. doi: 10.1002/jcb.28013.
16. Khan MT, Rehaman AU, Junaid M, Malik SI, Wei DQ. Insight into novel clinical mutants of RpsA-S324F, E325K, and G341R of Mycobacterium tuberculosis associated with pyrazinamide resistance. Comput Struct Biotechnol J 2018;16:379-87.
17. Gu Y, Yu X, Jiang G, Wang X, Ma Y, Li Y, et al. Pyrazinamide resistance among multidrug-resistant tuberculosis clinical isolates in a national referral center of China and its correlations with pncA, rpsA, and panD gene mutations. Diagn Microbiol Infect Dis 2016;84(3):207-11.
18. Shi W, Chen J, Feng J, Cui P, Zhang S, Weng X, Zhang W, Zhang Y. Aspartate decarboxylase (PanD) as a new target of pyrazinamide in Mycobacterium tuberculosis. Emerg Microbes Infect 2014;3(8):e58.
19. Yee M, Gopal P, Dick T. Missense mutations in the unfoldase ClpC1 of the caseinolytic protease complex are associated with pyrazinamide resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2017;61(2). pii: e02342-16.
20. สำนักวัณโรค กรมควบคุมโรค. แนวทางการควบคุมวัณโรคประเทศไทย พ.ศ.2561. กรุงเทพฯ: สำนักพิมพ์อักษรกราฟฟิคแอนด์ดีไซน์; 2561.
21. World Health Organization. Technical manual for drug susceptibility testing of medicines used in the treatment of tuberculosis. Geneva, Switzerland: WHO; 2018.
22. Siddiqi SH, Rusch-Gerdes S. MGIT procedure manual. Foundation for Innovative Diagnostics; 2006.
23. Allen WS, S. M. Aronovic S, Brancone LM, Williams JH. Determination of the pyrazinamide content of blood and urine. Anal Chem 1953;25(6):895-7.
24. Wayne LG. Simple pyrazinamidase and urease tests for routine identification of mycobacteria. Am Rev Respir Dis 1974;109(1):147-51.
25. Tharinjaroen CS. Tuberculosis diagnosis: From knowledge to innovation in public health. J Assoc Med Sci 2017;5(1):1-21.
26. Kent PT, Kubica GP. Public health mycobacteriology: a guide for the level III laboratory. Atlanta, Georgia: CDC; 1985.
27. Alcántara R, Fuentes P, Antiparra R, Santos M, Gilman RH, Kirwan DE, et al. MODS-Wayne, a colorimetric adaptation of the microscopic-observation drug susceptibility (MODS) assay for detection of Mycobacterium tuberculosis pyrazinamide resistance from sputum samples. J Clin Microbiol 2019;57(2). pii: e01162-18.
28. Richter E, Rüsch-Gerdes S, Hillemann D. Drug-susceptibility testing in TB: current status and future prospects. Expert Rev Respir Med 2009;3(5):497-510.
29. Willby MJ, Wijkander M, Havumaki J, Johnson K, Werngren J, Hoffner S, et al. Detection of Mycobacterium tuberculosis pncA mutations by the Nipro Genoscholar PZA-TB II assay compared to conventional sequencing. Antimicrob Agents Chemother 2017;62(1). pii: e01871-17.
30. Driesen M, Kondo Y, de Jong BC, Torrea G, Asnong S, Desmaretz C, et al. Evaluation of a novel line probe assay to detect resistance to pyrazinamide, a key drug used for tuberculosis treatment. Clin Microbiol Infect 2018;24(1):60-4.
31. Tam KK, Leung KS, Siu GK, Chang KC, Wong SS, Ho PL, et al. Direct Detection of pyrazinamide resistance in Mycobacterium tuberculosis by use of pncA PCR sequencing. J Clin Microbiol 2019;57(8). pii: e00145-19.
32. Tola HH, Tol A, Shojaeizadeh D, Garmaroudi G. Tuberculosis Treatment Non-Adherence and Lost to Follow Up among TB Patients with or without HIV in Developing Countries: A Systematic Review. Iran J Public Health 2015;44(1):1-11.
33. Fonseca Lde S, Marsico AG, Vieira GB, Duarte Rda S, Saad MH, Mello Fde C. Correlation between resistance to pyrazinamide and resistance to other antituberculosis drugs in Mycobacterium tuberculosis strains isolated at a referral hospital. J Bras Pneumol 2012;38(5):630-3.