The effect of climate variability on dengue disease in endemic areas: a study of Bandung City, Indonesia 10.55131/jphd/2025/230321
Main Article Content
Abstract
Dengue fever remains a significant public health issue, particularly in dengue-endemic areas such as Bandung City, Indonesia. Climatic variations have been shown to influence the transmission and incidence of dengue, emphasizing the need to analyze these relationships in endemic regions. This study aimed to analyze the relationship between climate variability and dengue incidence in Bandung City during 2021–2023 and to project trends for 2024 and 2025. An ecological study design was used, with secondary data collected from 30 sub-districts. Climate variables (temperature, humidity, rainfall, wind speed, and air pressure) and dengue incidence data were analyzed using multiple linear regression and exponential smoothing. The results showed that climatic variations collectively explained 24.5% of the variance in dengue incidence (R²=0.245, p=0.018), with temperature (p=0.024, r=0.375) and air pressure (p=0.015, r=-0.402) being the most influential factors. Humidity, rainfall, and wind speed showed no significant individual effects. Projections indicated an increasing trend in dengue cases in 2024 and 2025, supported by preliminary data showing 1,741 cases reported in Bandung City as of March 2024.These findings confirm the relevance of climate variability as a predictor for dengue incidence. Environment-based interventions, including climate-based early warning systems, proper water reservoir management, community education, and cross-sectoral collaboration, are essential to mitigate the impact of climate variability on dengue transmission. Further research is needed to explore spatial and temporal changes in dengue transmission to improve prevention and control efforts.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Ogunlade ST, Meehan MT, Adekunle AI, McBryde ES. A systematic review of mathematical models of dengue transmission and vector control: 2010–2020. Viruses. 2023;15(1):254.
Shimelis T, Mulu A, Mengesha M, Alemu A, Mihret A, Tadesse BT, et al. Detection of dengue virus infection in children presenting with fever in Hawassa, southern Ethiopia. Sci Rep. 2023;13(1):7997.
Medlock JM, Leach SA. Effect of climate change on vector-borne disease risk in the UK. Lancet Infect Dis. 2015;15(6):721–30.
WHO. Dengue and severe dengue 2022 [Internet]. World Health Organization (WHO). 2022 [cited 2023 Dec 19]. Available from: https:// www.who.int/news-room/fact-sheets/ detail/dengue-and-severe-dengue
WHO. Dengue in the South-East Asia [Internet]. World Health Organization (WHO). 2023 [cited 2023 Dec 19]. Available from: https://www.who.int/ southeastasia/health-topics/dengue-and-severe-dengue
Ministry of Health of the Republic of Indonesia. Indonesia Health Profile 2022. Ministry of Health of the Republic of Indonesia [Internet]. 2023 [cited 2024 Jan 7]; Available from: https://p2p.kemkes.go.id/profil-kesehatan-2022/
Health Office of Bandung City. Health Profile of Bandung City in 2022. Health Office of Bandung City [Internet]. 2023 [cited 2024 Jan 12]; Available from: https://dinkes. bandung.go.id/download/profil-kesehatan-2022/
Ministry of Health of the Republic of Indonesia. When Dengue Fever Comes Back [Internet]. Ministry of Health of the Republic of Indonesia. 2024 [cited 2024 Aug 27]. Available from: https:// sehatnegeriku.kemkes.go.id/baca/blog/20240605/0545670/ketika-demam-berdarah-kembali-merebak/
Ishak H, Aisyah AS, Mallongi A, Astuti RDP. Risk factors and fogging effectiveness of dengue hemorrhagic fever incidence in the Pontap Public Health Center area in Palopo City, Indonesia. Enferm Clin. 2020;30(4): 294–7.
Kolimenakis A, Heinz S, Wilson ML, Winkler V, Yakob L, Michaelakis A, et al. The role of urbanisation in the spread of Aedes mosquitoes and the diseases they transmit—A systematic review. PLoS Negl Trop Dis. 2021; 15(9):e0009631.
Nuraini N, Fauzi IS, Fakhruddin M, Sopaheluwakan A, Soewono E. Climate-based dengue model in Semarang, Indonesia: Predictions and descriptive analysis. Infect Dis Model. 2021;6:598–611.
Watts MJ, Kotsila P, Mortyn PG, Sarto i Monteys V, Urzi Brancati C. Influence of socio-economic, demographic and climate factors on the regional distribution of dengue in the United States and Mexico. Int J Health Geogr. 2020;19(44):1–15.
Amelinda YS, Wulandari RA, Asyary A. The effects of climate factors, population density, and vector density on the incidence of dengue hemorrhagic fever in South Jakarta Administrative City 2016-2020: an ecological study. Acta Bio Medica: Atenei Parmensis. 2022;93(6): e2022323.
Johansen IC, Castro MC de, Alves LC, Carmo RL do. Population mobility, demographic, and environmental characteristics of dengue fever epidemics in a major city in Southeastern Brazil, 2007-2015. Cad Saude Publica. 2021;37(4).
Bertacco EAM, Prestes-Carneiro LE, de Araújo RR, D’Andrea LAZ, Pinheiro LS, Flores EF. Impact of storm drains on the maintenance of dengue endemicity in Presidente Prudente, São Paulo, Brazil: a geospatial and epidemiologic approach. Front Public Health. 2024 Sep 10;12.
Lee SA, Economou T, Barcellos C, Catão R, Carvalho MS, Lowe R. Effect of climate change, connectivity, and socioeconomic factors on the expansion of the dengue virus transmission zone in 21st century Brazil: an ecological modelling study. Lancet Planet Health. 2021 Apr;5:S14.
Sutriyawan A, Martini M, Sutiningsih D, Akbar H, Agushybana F, Wahyuningsih NE, et al. Spatial analysis of dengue incidence and linear effects with climate conditions in Bandung City Indonesia in 2021-2023. Journal of Public Health and Development. 2025 Jan 1;23(1):244–58.
Horta MA, Bruniera R, Ker F, Catita C, Ferreira AP. Temporal relationship between environmental factors and the occurrence of dengue fever. Int J Environ Health Res. 2014;24(5):471–81.
Paul KK, Macadam I, Green D, Regan DG, Gray RT. Dengue transmission risk in a changing climate: Bangladesh is likely to experience a longer dengue fever season in the future. Environmental Research Letters. 2021 Nov 1;16(11):114003.
Kraemer MUG, Sinka ME, Duda KA, Mylne AQN, Shearer FM, Barker CM, et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife. 2015;4:e08347.
Marina R, Ariati J, Anwar A, Astuti EP, Dhewantara PW. Climate and vector-borne diseases in Indonesia: a systematic literature review and critical appraisal of evidence. Int J Biometeorol. 2023 Jan 11;67(1):1–28.
Rogers DJ, Randolph SE. Climate change and vector-borne diseases. Adv Parasitol. 2006;62:345–81.
Reinhold JM, Lazzari CR, Lahondère C. Effects of the environmental temperature on Aedes aegypti and Aedes albopictus mosquitoes: a review. Insects. 2018;9(4):158.
Xiao FZ, Zhang Y, Deng YQ, He S, Xie HG, Zhou XN, et al. The effect of temperature on the extrinsic incubation period and infection rate of dengue virus serotype 2 infection in Aedes albopictus. Arch Virol. 2014;159(July 2014):3053–7.
Naqvi SAA, Jan B, Shaikh S, Kazmi SJH, Waseem LA, Nasar-u-minAllah M, et al. Changing climatic factors favor dengue transmission in lahore, Pakistan. Environments. 2019;6(6):71.
Chuang TW, Chaves LF, Chen PJ. Effects of local and regional climatic fluctuations on dengue outbreaks in southern Taiwan. PLoS One. 2017;12(6):e0178698.
Islam S, Haque CE, Hossain S, Hanesiak J. Climate variability, dengue vector abundance and dengue fever cases in Dhaka, Bangladesh: a time-series study. Atmosphere (Basel). 2021;12(7):905.
Harapan H, Michie A, Sasmono RT, Imrie A. Dengue: a minireview. Viruses. 2020;12(8):829.
Redoni M, Yacoub S, Rivino L, Giacobbe DR, Luzzati R, Di Bella S. Dengue: Status of current and under‐development vaccines. Rev Med Virol. 2020;30(4):e2101.
Torres-Flores JM, Reyes-Sandoval A, Salazar MI. Dengue vaccines: an update. BioDrugs. 2022;36(3):325–36.
Wilson AL, Courtenay O, Kelly-Hope LA, Scott TW, Takken W, Torr SJ, et al. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl Trop Dis. 2020;14(1):e0007831.
Badan Pusat Statistik Kota Bandung. Kota Bandung Dalam Angka 2023. Badan Pusat Statistik Kota Bandung [Internet]. 2023 [cited 2024 Oct 31]; Available from: https://bandungkota. bps.go.id/id/publication/2023/02/28/13fdfc9d27b1f2c450de2ed4/kota-bandung-dalam-angka-2023.html
Wetthasinghe WAUK, Attanayake AMCH, Liyanage UP, Perera SSN. Proactive Dengue Management System Synergize by an Exponential Smoothing Model. In 2022. p. 425–31.
Cheng J, Bambrick H, Yakob L, Devine G, Frentiu FD, Williams G, et al. Extreme weather conditions and dengue outbreak in Guangdong, China: Spatial heterogeneity based on climate variability. Environ Res. 2021;196 (May 2021):110900.
Naish S, Dale P, Mackenzie JS, McBride J, Mengersen K, Tong S. Climate change and dengue: a critical and systematic review of quantitative modelling approaches. BMC Infect Dis. 2014 Dec 26;14(1):167.
Choi Y, Tang CS, McIver L, Hashizume M, Chan V, Abeyasinghe RR, et al. Effects of weather factors on dengue fever incidence and implications for interventions in Cambodia. BMC Public Health. 2016; 16(1):1–7.
Campbell KM, Lin CD, Iamsirithaworn S, Scott TW. The complex relationship between weather and dengue virus transmission in Thailand. Am J Trop Med Hyg. 2013; 89(6):1066.
Hii YL, Zhu H, Ng N, Ng LC, Rocklöv J. Forecast of dengue incidence using temperature and rainfall. PLoS Negl Trop Dis. 2012;6(11):e1908.
Ehelepola NDB, Ariyaratne K, Buddhadasa W, Ratnayake S, Wickramasinghe M. A study of the correlation between dengue and weather in Kandy City, Sri Lanka (2003-2012) and lessons learned. Infect Dis Poverty. 2015;4:1–15.
Syahribulan BFM, MS H. Waktu aktivitas menghisap darah nyamuk Aedes aegypti dan Aedes albopictus di desa Pa’lanassang kelurahan Barombong Makassar Sulawesi Selatan. Jurnal Ekologi Kesehatan. 2012;11(4):306–14.
Liu-Helmersson J, Stenlund H, Wilder-Smith A, Rocklöv J. Vectorial capacity of Aedes aegypti: effects of temperature and implications for global dengue epidemic potential. PLoS One. 2014;9(3):e89783.
Rau MJ, Komariyah S, Pitriani P. The Relationship Of The Climate Change Factor With The Event Of Dengue Hemorrhagic Fever in Palu City Year 2013-2017. Preventif: Jurnal Kesehatan Masyarakat. 2019;10(2): 83–94.
Tumey A, Kaunang WPJ, Asrifuddin A. Hubungan Variabilitas Iklim Dengan Kejadian Demam Berdarah Dengue (Dbd) Di Kabupaten Kepulauan Talaud Tahun 2018-Juni 2020. KESMAS: Jurnal Kesehatan Masyarakat Universitas Sam Ratulangi. 2020;9(7).
Susilawaty A, Ekasari R, Widiastuty L, Wijaya DR, Arranury Z, Basri S. Climate factors and dengue fever occurrence in Makassar during period of 2011–2017. Gac Sanit. 2021;35(2): S408–12.
Monintja TCN, Arsin AA, Amiruddin R, Syafar M. Analysis of temperature and humidity on dengue hemorrhagic fever in Manado Municipality. Gac Sanit. 2021;35(2):S330–3.
Wu X, Lang L, Ma W, Song T, Kang M, He J, et al. Non-linear effects of mean temperature and relative humidity on dengue incidence in Guangzhou, China. Science of the total environment. 2018;628(Jul 2018): 766–71.
Polwiang S. The time series seasonal patterns of dengue fever and associated weather variables in Bangkok (2003-2017). BMC Infect Dis. 2020;20(Mar 2020):1–10.
Sury IA, Martini M, Yuliawati S, Hestiningsih R. Gambaran Epidemiologi Kejadian Demam Berdarah Dengue: Karakteristik Penderita, Waktu Dan Faktor Lingkungan Di Kecamatan Tembalang Tahun 2019. Jurnal Kesehatan Masyarakat. 2021;9(6):816–21.
Hidayati L, Hadi UK, Soviana S. Kejadian demam berdarah dengue di kota sukabumi berdasarkan kondisi iklim. Acta Vet Indones. 2017; 5(1):22–8.
Bone T, Kaunang WPJ, Langi FLFG. Hubungan antara curah hujan, suhu udara dan kelembaban dengan kejadian demam berdarah dengue di Kota Manado tahun 2015-2020. KESMAS. 2021;10(5).
Sutriyawan A, Agung S, Manap A, Abdul M, Sulami N, Neti S, et al. Analysis of entomological indicators and distribution of Aedes aegypti larvae in dengue endemic areas. Journal of microbiology, epidemiology and immunobiology. 2023;100(4): 314–20.
Valdez-Delgado KM, Moo-Llanes DA, Danis-Lozano R, Cisneros-Vázquez LA, Flores-Suarez AE, Ponce-García G, et al. Field effectiveness of drones to identify potential Aedes aegypti breeding sites in household environments from Tapachula, a dengue-endemic city in southern Mexico. Insects. 2021; 12(8):663.
Vannavong N, Seidu R, Stenström TA, Dada N, Overgaard HJ. Effects of socio-demographic characteristics and household water management on Aedes aegypti production in suburban and rural villages in Laos and Thailand. Parasit Vectors. 2017;10:1–14.
Gandawari VT, Kaunang WPJ, Ratag BT. Hubungan antara variabilitas iklim dengan kejadian Demam Berdarah Dengue di Kota Bitung tahun 2015-2017. KESMAS. 2019;7(5).
Pascawati NA, Satoto TBT, Wibawa T, Frutos R, Maguin S. Dampak Potensial Perubahan Iklim Terhadap Dinamika Penularan Penyakit DBD Di Kota Mataram. Balaba: Jurnal Litbang Pengendalian Penyakit Bersumber Binatang Banjarnegara. 2019;49–60.
Rasmanto MF, sakka ambo, ainurafiq ainurafiq. Model Prediksi Kejadian Demam Berdarah Dengue (Dbd) Berdasarkan Unsur Iklim di Kota Kendari Tahun 2000-2015. Jurnal Ilmiah Mahasiswa Kesehatan Masyarakat Unsyiah. 2016;1(3).
Ishak NI, Kasman K. The effect of climate factors for dengue hemorrhagic fever in Banjarmasin City, South Kalimantan Province, Indonesia, 2012-2016. Public Health of Indonesia. 2018;4(3):121–8.
Faruk MO, Jannat SN, Rahman MS. Impact of environmental factors on the spread of dengue fever in Sri Lanka. International Journal of Environmental Science and Technology. 2022;19(11): 10637–48.
Miah MM, Hossain MB, Jannat SN, Karim MR, Rahman MR, Arafat Y, et al. Assessing the impact of climatic factors on dengue fever transmission in Bangladesh. Aerobiologia (Bologna). 2024;40(Mar 2024):1–13.
Rojali R, Restiaty I, Lisa D, Setyadi MD. Hubungan Perubahan Iklim Dengan Kejadian Demam Berdarah Dengue (DBD) Di Kota Administrasi Jakarta Timur. Sulolipu: Media Komunikasi Sivitas Akademika dan Masyarakat. 2023;23(1):172–86.
Gu H, Leung RKK, Jing Q, Zhang W, Yang Z, Lu J, et al. Meteorological factors for dengue fever control and prevention in South China. Int J Environ Res Public Health. 2016; 13(9):867.