Analysis of medication demand forecasting using single exponential smoothing method based on consumption patterns at Bali Mandara Hospital, Indonesia 10.55131/jphd/2026/240108

Main Article Content

Ni Putu Vyra Ginanti Putri
Chairun Wiedyaningsih
Endang Yuniarti

Abstract

Drug planning requires accurate forecasting to determine the right type and amount of drugs. The Single Exponential Smoothing (SES) method is used in this study due to its ability to produce more accurate forecasts than other methods. Drugs are classified based on consumption patterns into Smooth, Intermittent, Erratic, and Lumpy to evaluate the accuracy of the SES method on each pattern. This descriptive and non-experimental study uses retrospective data from 469 drugs at Bali Mandara Hospital from January 2023 to December 2023. Data were classified based on consumption patterns with CV2 and ADI parameters, and forecasting was performed using the Eviews-12 application and evaluated with the MAPE accuracy indicator using Microsoft Excel. The clustering results showed 335 drugs with smooth consumption patterns, three with intermittent consumption patterns, 50 with lumpy consumption patterns, and 81 with erratic consumption patterns. SES gives the best results in a smooth pattern, with 71.43% of forecasts falling into the accurate, good, or reasonable category. The smooth pattern also shows highly accurate (MAPE <10%) and good (MAPE 10%-20%) forecasting rates that are higher than other consumption patterns. This study concludes that drugs categorized as smooth consumption patterns produce more accurate forecasts than other consumption patterns (intermittent, lumpy, and erratic).

Article Details

How to Cite
1.
Putri NPVG, Wiedyaningsih C, Yuniarti E. Analysis of medication demand forecasting using single exponential smoothing method based on consumption patterns at Bali Mandara Hospital, Indonesia: 10.55131/jphd/2026/240108. J Public Hlth Dev [internet]. 2026 Jan. 29 [cited 2026 Feb. 2];24(1):107-18. available from: https://he01.tci-thaijo.org/index.php/AIHD-MU/article/view/274574
Section
Original Articles
Author Biographies

Ni Putu Vyra Ginanti Putri, Master Program of Pharmacy Management, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia

Master Program of Pharmacy Management, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia

Department of Social Pharmacy, Faculty of Pharmacy, Universitas Mahasaraswati Denpasar, Bali, Indonesia

Chairun Wiedyaningsih, Departement of Pharmaceutics, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia

Departement of Pharmaceutics, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia

Endang Yuniarti, Pharmacy Departement PKU Muhammadiyah Hospital Yogyakarta, Yogyakarta, Indonesia

Pharmacy Departement PKU Muhammadiyah Hospital Yogyakarta, Yogyakarta, Indonesia

Pharmacy Program, Muhammadiya University of Gombong, Indonesia

References

Putri RY, Indrawati L, Hutapea F. Analisis Perencanaan Dan Pengendalian Obat Dengan Metode ABC Indeks Kritis Di Instalasi Farmasi Rumah Sakit Agung Jakarta Tahun 2020-2021. MARSI. 2022 Apr 30;6(1):86–97.

Hanjaya, Fitriani AD, Syamsul D. Faktor-Faktor Yang Mempengaruhi Ketersediaan Obat Di Instalasi Farmasi Rumah Sakit Umum Daerah Dr. Pirngadi Kota Medan Tahun 2020. Journal of Healthcare Technology and Medicine. 2021;7(1):14–24.

Hadidah IS. Faktor Penyebab Kejadian Stagnant Dan Stockout Di Instalasi Farmasi Upt Rumah Sakit Mata Masyarakat Jawa Timur. JMK. 2016 Oct 15;2(2):110.

Idham Y, Yusuf S, Usman. Analisis Perencanaan Obat Di Rumah Sakit Umum Daerah Massenrempulu Kabupaten Enrekang. MAKES. 2022 Jan 5;5(1):574–83.

Sabarina AM, Rustamaji HC, Himawan H. Prediction Of Drug Sales Using Methods Forecasting Double Exponential Smoothing (Case Study : Hospital Pharmacy of Condong Catur). Telematika. 2021 Mar 16;18(1):106.

Yuniarti R. Analisa Metode Single Exponential Smoothing Sebagai Peramalan Penjualan Terhadap Penyalur Makanan (Studi Kasus : Lokatara Dimsum). Aliansi. 2021 Mar 1;15(2):29–34.

Almaktoom AT. Minimizing Cost of Controlled Narcotics Drugs Consumption using Predictive Modelling. JPTCP. 2023 Jan 1;30(13):36–51.

Zhang X, Yu Y, Xiong F, Luo L. Prediction of Daily Blood Sampling Room Visits Based on ARIMA and SES Model. Computational and Mathematical Methods in Medicine. 2020 Sep 3;2020:1–11.

Syntetos AA, Boylan JE, Croston JD. On the categorization of demand patterns. Journal of the Operational Research Society. 2005 May;56(5):495–503.

Ginantra NLWSR, Anandita IBG. Penerapan Metode Single Exponential Smoothing Dalam Peramalan Penjualan Barang. Jurnal Sains Komputer & Informatika (J-SAKTI). 2019;3(2):433–41.

Satibi. Manajemen Obat di Rumah Sakit. Gadjah Mada University Press; 2014. 1–239 p.

Lewis, C.D. Industrial and Business Forecasting Methods [Internet]. London: Butterworths; 1982. 143 p. Available from: industrialbusine0000lewi

Sesario R, Duha T, Alfiah A, Pramono SA, Cakranegara PA. Single Exponential Smoothing In Forecasting Tools And Medicine Stocks. JURNAL INFOKUM. 2022;10(4):27–32.

Romaita D, Bachtiar FA, Furqon MT. Perbandingan Metode Exponential Smoothing Untuk Peramalan Penjualan Produk Olahan Daging Ayam Kampung (Studi Kasus : Ayam Goreng Mama Arka). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer. 2019;3(11):10384–92.

Hudaningsih N, Utami SF, Jabbar WAA. Perbandingan Peramalan Penjualan Produk Aknil PT.Sunthi Sepuri Mengguanakan Metode Single Moving Average Dan Single Exponential Smooting. JINTEKS. 2020 Feb 20;2(1):15–22.

Falani I. Penentuan Nilai Parameter Metode Exponential Smoothing Dengan Algoritma Genetik Dalam Meningkatkan Akurasi Forecasting. Com, Engine, Sys, Sci. 2018 Jan 31;3(1):14.

Yuniarti E, Prabandari YS, Kristin E, Suryawati S. Rationing for medicines by health care providers in Indonesia National Health Insurance System at hospital setting: a qualitative study. J of Pharm Policy and Pract. 2019 Dec;12(1):7.

Makridakis, Wheelwright, Hyndman. Forecasting, Methods and Aplications. 3rd ED. India: Wiley India Pvt. Limited; 2018.

Hyndman RJ, Athanasopoulos G. Forecasting: Principles and Pratice. 2nd Ed. Australia: Otexts; 2018.

Kiefer D, Grimm F, Bauer M, Van D. Demand Forecasting Intermittent and Lumpy Time Series: Comparing Statistical, Machine Learning and Deep Learning Methods. In: Demand Forecasting Intermittent and Lumpy Time Series: Comparing Statistical, Machine Learning and Deep Learning Methods [Internet]. 2021 [cited 2024 Sep 9]. p. 1425–34. Available from: http://hdl.handle.net/ 10125/70784