Implication of heat islands on dengue incidence in urban areas: a systematic review 10.55131/jphd/2025/230122

Main Article Content

Murni Amirra Mohd Aminuddin
Nazri Che Dom
Siti Rohana Mohd Yatim

Abstract

Urban heat island is known to adversely affect microclimate in an area which includes temperature, rainfall, relative humidity and wind velocity. These climatic changes may influence the transmission of dengue and density of Aedes spp due to their effect on the life cycle of Aedes spp which is the primary vector for dengue. This review aims to analyse existing literatures on urban heat islands and its implication on dengue incidence. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) has been used as guide for the review involving resources from three databases (Scopus, Web of Sciences, ScienceDirect). 13 articles were reviewed following the systematic review process involving the articles identification, screening, eligibility and quality appraisal. Review found that urban heat islands can be described as area with high temperature, low vegetation coverage and high percentage of built-up areas which can be associated to high dengue incidences. Higher temperature in the urban areas was also found to influence dengue transmission and may contribute to the Aedes mosquito density which is the vector that transmitted dengue viruses among the population. It is suggested that more study to be conducted to determine the implication of urban heat island on dengue incidence particularly using indicator such as urban heat island intensity (UHII), daytime and nighttime temperature, population density and socioeconomic characteristics as the study variables with the study focuses on the urban cities with higher risk of dengue transmission.

Article Details

How to Cite
1.
Mohd Aminuddin MA, Che Dom N, Mohd Yatim SR. Implication of heat islands on dengue incidence in urban areas: a systematic review: 10.55131/jphd/2025/230122. J Public Hlth Dev [internet]. 2024 Dec. 31 [cited 2025 May 16];23(1):292-310. available from: https://he01.tci-thaijo.org/index.php/AIHD-MU/article/view/272097
Section
Review articles
Author Biographies

Murni Amirra Mohd Aminuddin, Centre of Environmental Health and Safety, Faculty of Health Sciences, Universiti Teknologi MARA, 42300 Puncak Alam, Selangor, Malaysia

Centre of Environmental Health and Safety, Faculty of Health Sciences, Universiti Teknologi MARA, 42300 Puncak Alam, Selangor, Malaysia

Nazri Che Dom, Centre of Environmental Health and Safety, Faculty of Health Sciences, Universiti Teknologi MARA, 42300 Puncak Alam, Selangor, Malaysia

Centre of Environmental Health and Safety, Faculty of Health Sciences, Universiti Teknologi MARA, 42300 Puncak Alam, Selangor, Malaysia

Siti Rohana Mohd Yatim, Centre of Environmental Health and Safety, Faculty of Health Sciences, Universiti Teknologi MARA, 42300 Puncak Alam, Selangor, Malaysia

Centre of Environmental Health and Safety, Faculty of Health Sciences, Universiti Teknologi MARA, 42300 Puncak Alam, Selangor, Malaysia

References

Hassan T, Zhang J, Prodhan FA, Pangali Sharma TP, Bashir B. Surface Urban Heat Islands Dynamics in Response to LULC and Vegetation across South Asia (2000–2019). Remote Sensing. 2021;13(16):3177. doi: 10.3390/rs13163177

Li D, Liao W, Rigden AJ, Liu X, Wang D, Malyshev S, et al. Urban heat island: Aerodynamics or imperviousness? Sci Adv. 2024;5(4):eaau4299. doi:10.1126/ sciadv.aau4299

Garuma GF. How the Interaction of Heatwaves and Urban Heat Islands Amplify Urban Warming. Adv Environ Eng Res. 2022;3(2):022. doi: 10.21926/ aeer.2202022

Stewart ID. Why should urban heat island researchers study history? Urban Climate. 2019;30:100484. doi: 10.1016/j.uclim.2019.100484

Kong J, Zhao Y, Carmeliet J, Lei C. Urban Heat Island and Its Interaction with Heatwaves: A Review of Studies on Mesoscale. Sustainability. 2021; 13(19):10923. doi: 10.3390/su1319 10923

Ibrahim MH, Latiff NAA, Ismail K, Isa NKM. Effect of urbanization activities towards the formation of urban heat island in Cameron Highlands, Malaysia. IOP Conf Ser: Earth Environ Sci. 2018;148:012022. doi: 10.1088/ 1755-1315/148/1/012022

Wimberly MC, Davis JK, Evans MV, Hess A, Newberry PM, et al. Land cover affects microclimate and temperature suitability for arbovirus transmission in an urban landscape. PLOS Neglected Tropical Diseases. 2020;14(9):e0008614. doi: 10.1371/ journal.pntd.0008614

World Health Organization. Disease Outbreak News; Dengue – Global Situation [Internet]. 2024 [Cited 2024 August 1]. Available from: https:// www.who.int/emergencies/disease-outbreak-news/item/2024-DON 518#:~:text=Situation%20at%20a%20glance,cases%2C%20and%20over%203000%20deaths.

Teo CHJ, Lim PKC, Voon K, Mak JW. Detection of dengue viruses and Wolbachia in Aedes aegypti and Aedes albopictus larvae from four urban localities in Kuala Lumpur, Malaysia. Trop Biomed. 2017;34(3):583–597.

Marinho RA, Beserra EB, Bezerra-Gusmão MA, Porto V de S, Olinda RA, dos Santos CAC. Effects of temperature on the life cycle, expansion, and dispersion of Aedes aegypti (Diptera: Culicidae) in three cities in Paraiba, Brazil. J Vector Ecol. 2016;41(1):1–10. doi: 10.1111/jvec.12187

Sukiato F, Wasserman RJ, Foo SC, Wilson RF, Cuthbert RN. The effects of temperature and shading on mortality and development rates of Aedes aegypti (Diptera: Culicidae). J Vector Ecol. 2019;44:264-270. doi: 10.1111/jvec. 12358

Reinhold JM, Lazzari C, Lahondère C. Effects of the Environmental Temperature on Aedes aegypti and Aedes albopictus Mosquitoes: A Review. Insects. 2018;9(4):158. doi: 10.3390/insects9040158

Edillo F, Ymbong RR, Bolneo AA, Hernandez RJ, Fuentes BL, Cortes G, et al. Temperature, season, and latitude influence development-related phenotypes of Philippine Aedes aegypti (Linnaeus): Implications for dengue control amidst global warming. Parasit Vectors. 2022;15(1):74. doi: 10.1186/ s13071-022-05186-x

Muturi EJ, Blackshear M Jr, Montgomery A. Temperature and density-dependent effects of larval environment on Aedes aegypti competence for an alphavirus. J Vector Ecol. 2012;37(1):154–61. doi: 10.1111/ j.1948-7134.2012.00212.

Rocklöv J, Tozan Y. Climate change and the rising infectiousness of dengue. Emerg Top Life Sci. 2019;3(2):133-142. doi: 10.1042/ETLS20180123

Akhtar R, Gupta PT, Srivastava AK. Urbanization, Urban Heat Island Effects and Dengue Outbreak in Delhi. In: Akhtar R, editor. Climate Change and Human Health Scenario in South and Southeast Asia. Springer, Cham. 2016;p.99–111. doi: 10.1007/978-3-319-23684-1_7

de Azevedo TS, Bourke BP, Piovezan R, Sallum MAM. The influence of urban heat islands and socioeconomic factors on the spatial distribution of Aedes aegypti larval habitats. Geospat Health. 2018;13(1):623. doi: 10.4081/ gh.2018.623

Shaffril HAM, Krauss SE, Samsuddin SF. A systematic review on Asian’s farmers’ adaptation practices towards climate change. Sci Total Environ. 2018;644:683–695. doi: 10.1016/ j.scitotenv.2018.06.349

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372: n71. doi: https://doi.org/10.1136/ bmj.n71

Mohamed Shaffril HA, Samsuddin SF, Abu Samah A. The ABC of systematic literature review: the basic methodological guidance for beginners. Qual Quant. 2021;55:1319–1346. doi: 10.1007/s11135-020-01059-6

Santos JPC, Honório NA, Barcellos C, Nobre AA. A Perspective on Inhabited Urban Space: Land Use and Occupation, Heat Islands, and Precarious Urbanization as Determinants of Territorial Receptivity to Dengue in the City of Rio De Janeiro. Int J Environ Res Public Health. 2020; 17(18):6537. doi: 10.3390/ijerph 17186537

Westby KM, Adalsteinsson SA, Biro EG, Beckermann AJ, Medley KA. Aedes albopictus Populations and Larval Habitat Characteristics across the Landscape: Significant Differences Exist between Urban and Rural Land Use Types. Insects. 2021;12(3):196. doi: 10.3390/insects12030196

Méndez-Lázaro P, Muller-Karger FE, Otis D, McCarthy MJ, Peña-Orellana M. Assessing Climate Variability Effects on Dengue Incidence in San Juan, Puerto Rico. Int J Environ Res Public Health. 2014;11(9):9409-28. doi: 10.3390/ijerph110909409

Nakhapakorn K, Sancharoen W, Mutchimwong A, Jirakajohnkool S, Onchang R, Rotejanaprasert C, et al. Assessment of Urban Land Surface Temperature and Vertical City Associated with Dengue Incidences. Remote Sens. 2020;12(22):3802. doi: 10.3390/rs12223802

Cheng J, Bambrick H, Yakob L, Devine G, Frentiu FD, Williams G, et al. Extreme weather conditions and dengue outbreak in Guangdong, China: Spatial heterogeneity based on climate variability. Environ Res. 2021;196: 110900. doi: 10.1016/j.envres.2021. 110900

Murdock CC, Evans M V., McClanahan TD, Miazgowicz KL, Tesla B. Fine-scale variation in microclimate across an urban landscape shapes variation in mosquito population dynamics and the potential of Aedes albopictus to transmit arboviral disease. PLoS Negl Trop Dis. 2017;11(5): e0005640. doi: 10.1371/journal.pntd. 0005640

de Jesús Crespo R, Rogers RE. Habitat Segregation Patterns of Container Breeding Mosquitos: The Role of Urban Heat Islands, Vegetation Cover, and Income Disparity in Cemeteries of New Orleans. Int J Environ Res Public Health. 2021;19(1):245. doi: 10.3390/ ijerph19010245

Li C, Wu X, Sheridan S, Lee J, Wang X, Yin J, et al. Interaction of climate and socio-ecological environment drives the dengue outbreak in epidemic region of China. PLoS Negl Trop Dis. 2021;15(10):e0009761. doi: 10.1371/ journal.pntd.0009761

Evans MV, Hintz CW, Jones L, Shiau J, Solano N, Drake JM, et al. Microclimate and Larval Habitat Density Predict Adult Aedes albopictus Abundance in Urban Areas. Am J Trop Med Hyg. 2019;101(2):362-370. doi: 10.4269/ajtmh.19-0220

Araujo RV, Albertini MR, Costa-da-Silva AL, Suesdek L, Franceschi NC, Bastos NM, et al. São Paulo urban heat islands have a higher incidence of dengue than other urban areas. Braz J Infect Dis. 2015;19(2):146-55. doi: 10.1016/j.bjid.2014.10.004

Ehelepola NDB, Ariyaratne K. The correlation between dengue incidence and diurnal ranges of temperature of Colombo district, Sri Lanka 2005–2014. Glob Health Action. 2016; 9(1):32267. doi: 10.3402/gha.v9.32267

United States Census Bureau. Urban and Rural [Internet]. 2023 [Cited 2024 August 1]. Available from: http: https:// www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural.html.

United Nations Department of Economic and Social Affairs. Demographic Yearbook 73rd Issue. 2022.

Seah A, Aik J, Ng LC, Tam CC. The effects of maximum ambient temperature and heatwaves on dengue infections in the tropical city-state of Singapore – A time series analysis. Sci Total Environ. 2021;775:14117. doi: 10.1016/j.scitotenv.2021.145117

European Centre for Disease Prevention and Control. Dengue worldwide overview [Internet]. [Cited 2024 August 1]. Available from: https://www.ecdc.europa.eu/en/dengue-monthly#:~:text=Dengue-,Since%20 the%20beginning%20of%202024%2C%20over%2010%20million%20dengue%20cases,of%20cases%20reported%20throughout%202023.

Pan America Health Organization. Epidemiological Update - Increase in dengue cases in the Region of the Americas - 18 June 2024 [Internet]. 2024 [Cited 2024 August 1]. Available from: https://www.paho.org/en/ documents/epidemiological-update-increase-dengue-cases-region-americas-18-june-2024.

Rahman MN, Rony MRH, Jannat FA, Chandra Pal S, Islam MS, Alam E, et al. Impact of Urbanization on Urban Heat Island Intensity in Major Districts of Bangladesh Using Remote Sensing and Geo-Spatial Tools. Climate. 2022; 10(1):3. doi: 10.3390/cli10010003

Majid NA, Razman MR, Zakaria SZS, Nazi NM. Dengue Vector Density Incident and Its Implication to Urban Livability. PREPRINT (Version 1) available at Research Square. 2020. doi: 10.21203/rs.3.rs-33464/v1

Barcellos C, Lowe R. Expansion of the dengue transmission area in Brazil: the role of climate and cities. Trop Med Int Health. 2014;19(2):159-68. doi: 10.1111/tmi.12227

Kamal ASMM, Al-Montakim MN, Hasan MA, Mitu MMP, Gazi MY, Uddin MM, et al. Relationship between Urban Environmental Components and Dengue Prevalence in Dhaka City-An Approach of Spatial Analysis of Satellite Remote Sensing, Hydro-Climatic, and Census Dengue Data. Int J Environ Res Public Health. 2023; 20(5):3858. doi: 10.3390/ijerph 20053858

Misslin R, Telle O, Daudé E, Vaguet A, Paul RE. Urban climate versus global climate change—what makes the difference for dengue? Ann N Y Acad Sci. 2016; 1382(1):56-72. doi: 10.1111/ nyas.13084

Erraguntla M, Dave D, Zapletal J, Myles K, Adelman ZN, Pohlenz TD, et al. Predictive model for microclimatic temperature and its use in mosquito population modeling. Sci Rep. 2021;11:18909. doi: 10.1038/s41598-021-98316-x

Flores Ruiz S, Cabrera Romo S, Castillo Vera A, Dor A. Effect of the Rural and Urban Microclimate on Mosquito Richness and Abundance in Yucatan State, Mexico. Vector Borne Zoonotic Dis. 2022;22(5):281-288. doi: 10.1089/vbz.2021.0105

Siraj AS, Oidtman RJ, Huber JH, Kraemer MUG, Brady OJ, Johansson MA, et al. Temperature modulates dengue virus epidemic growth rates through its effects on reproduction numbers and generation intervals. PLoS Negl Trop Dis. 2017;11(7):e0005797. doi: 10.1371/journal.pntd.0005797

Awang MF, Dom NC. The effect of temperature on the development of immature stages of immature stages of Aedes spp. against breeding containers. Int J Global Warming. 2020;21(3):215-233. doi: 10.1504/IJGW.2020. 10030526

Blasius J, Alimi AZ, Mas’ud MA, Dom NC. A Scoping Review of Research on Factors Affecting the Oviposition, Development and Survival of Aedes Mosquitoes. APEOHJ. 2019;5(1):27–39.

Abdullah NAMH, Dom NC, Salleh SA, Salim H, Precha N. The association between dengue case and climate: A systematic review and meta-analysis. One Health. 2022;15:100452. doi: 10.1016/j.onehlt.2022.100452

Sarfraz Ms, Tripathi NK, Tipdecho T, Thongbu T, Kerdthong P, Souris M. Analyzing the spatio-temporal relationship between dengue vector larval density and land-use using factor analysis and spatial ring mapping. BMC Public Health. 2012;12:853. doi: 10.1186/1471-2458-12-853

Arduino M de B, Mucci LF, Santos LM dos, Soares MF de S. Importance of microenvironment to arbovirus vector distribution in an urban area, São Paulo, Brazil. Rev Soc Bras Med Trop. 2020;53:e20190504. doi: 10.1590/ 0037-8682-0504-2019

Gao P, Pilot E, Rehbock C, Gontariuk M, Doreleijers S, Wang L, et al. Land use and land cover change and its impacts on dengue dynamics in China: A systematic review. PLoS Negl Trop Dis. 2021;15(10):e0009879. doi: 10.1371/journal.pntd.0009879

Sari SYI, Adelwin Y, Rinawan FR. Land Use Changes and Cluster Identification of Dengue Hemorrhagic Fever Cases in Bandung, Indonesia. Trop Med Infect Dis. 2020;5(2):70. doi:10.3390/tropicalmed5020070

Fahmy AH, Abdelfatah MA, El-Fiky G. Investigating land use land cover changes and their effects on land surface temperature and urban heat islands in Sharqiyah Governorate, Egypt. EJRS. 2023;26(2):293–306. doi: 10.1016/j.ejrs.2023.04.001

Grover A, Singh RB. Analysis of Urban Heat Island (UHI) in Relation to Normalized Difference Vegetation Index (NDVI): A Comparative Study of Delhi and Mumbai. Environments. 2015;2(2):125-138. doi: 10.3390/ environments2020125

Faridah L, Fauziah N, Agustian D, Mindra Jaya IGN, Eka Putra R, Ekawardhani S, et al. Temporal Correlation Between Urban Microclimate, Vector Mosquito Abundance, and Dengue Cases. J Med Entomol. 2022;59(3):1008-1018. doi: 10.1093/jme/tjac005

World Health Organization. Dengue and Severe Dengue [Internet]. 2024 [Cited 2024 August 2]. Available from: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue.