Bibliometric exploration of artificial intelligence applications in healthcare: trends and future directions 10.55131/jphd/2025/230220

Main Article Content

Animesh Sharma
Rahul Sharma

Abstract

This research employs the PRISMA framework to conduct an extensive bibliometric analysis, delving into the dynamic realm of Artificial Intelligence (AI) within the healthcare domain. Spanning the years 2010 to 2023, the study systematically gathers and examines scholarly works to delineate the trends, patterns, and emerging topics about AI's integration into healthcare. A thorough initial screening yields substantial academic articles, conference papers, and reviews, forming the basis for analysis. The examination primarily focuses on quantifying publication patterns, identifying influential authors, institutions, and countries, and mapping the thematic landscape of AI in healthcare. Employing various bibliometric metrics such as publication trends, prolific authors, influential journals, and co-occurrence networks of keywords, the study uncovers the remarkable surge in research centred on AI-driven healthcare. This surge signifies a notable paradigm shift towards harnessing technology for predictive analytics, personalized medicine, and enhanced patient care. Additionally, by leveraging visualization tools like VOSviewer, the study presents informative graphical representations elucidating clusters and associations among keywords, thereby providing deeper insights into the interdisciplinary dimensions of AI in healthcare. This study provides a structured overview of the evolving landscape of AI in healthcare, providing valuable perspectives for researchers, practitioners, and policymakers aiming to harness the potential of AI for advancing healthcare delivery and outcomes. The implications of these findings underscore the transformative potential of AI technologies in revolutionizing healthcare delivery, promoting sustainable healthcare practices, and fostering innovative solutions for future challenges.

Article Details

How to Cite
1.
Sharma A, Sharma R. Bibliometric exploration of artificial intelligence applications in healthcare: trends and future directions: 10.55131/jphd/2025/230220. J Public Hlth Dev [internet]. 2025 Apr. 30 [cited 2025 Dec. 25];23(2):281-303. available from: https://he01.tci-thaijo.org/index.php/AIHD-MU/article/view/271341
Section
Review articles
Author Biographies

Animesh Sharma, Mittal School of Business, Lovely Professional University Jalandhar-Delhi G.T. Road, Phagwara - 144 411, Punjab, India

Mittal School of Business, Lovely Professional University Jalandhar-Delhi G.T. Road, Phagwara - 144 411, Punjab, India

Rahul Sharma, Mittal School of Business, Lovely Professional University Jalandhar-Delhi G.T. Road, Phagwara - 144 411, Punjab, India

Mittal School of Business, Lovely Professional University Jalandhar-Delhi G.T. Road, Phagwara - 144 411, Punjab, India

References

Lee D, Yoon SN. Application of artificial intelligence-based technologies in the healthcare industry: Opportunities and challenges. Int J Environ Res Public Health. 2021;18(1):271. doi: 10.3390/ijerph18010271

Leone D, Schiavone F, Appio FP, Chiao B. How does artificial intelligence enable and enhance value co-creation in industrial markets? An exploratory case study in the healthcare ecosystem. J Bus Res. 2021;129:849-59. doi: 10.1016/j.jbusres.2020.11.008

Dwivedi YK, Hughes L, Ismagilova E, Aarts G, Coombs C, Crick T, et al. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int J Inf Manage. 2021;57: 101994. doi: 10.1016/j.ijinfomgt.2019. 08.002

Husnain A, Rasool S, Saeed A, Gill AY, Hussain HK. AI'S healing touch: examining machine learning's transformative effects on healthcare. J World Sci. 2023;2(10):1681-95. doi: 10.58344/jws.v2i10.448

Taj I, Zaman N. Towards industrial revolution 5.0 and explainable artificial intelligence: Challenges and opportunities. Int J Comput Digit Syst. 2022;12(1):295-320. doi: 10.12785/ ijcds/120124

Ibeneme S, Okeibunor J, Muneene D, Husain I, Bento P, Gaju C, et al. Data revolution, health status transformation and the role of artificial intelligence for health and pandemic preparedness in the African context. BMC Proc. 2021;15:1-12. doi: 10.1186/s12919-021-00228-1

Kulkov I. Next-generation business models for artificial intelligence start-ups in the healthcare industry. Int J Entrepr Behav Res. 2023;29(4):860-85. doi: 10.1108/IJEBR-04-2021-0304.

Amjad A, Kordel P, Fernandes G. A review on innovation in healthcare sector (telehealth) through artificial intelligence. Sustainability. 2023; 15(8):6655. doi: 10.3390/su15086655

Stasevych M, Zvarych V. Innovative robotic technologies and artificial intelligence in pharmacy and medicine: paving the way for the future of health care—a review. Big Data Cogn Comput. 2023;7(3):147. doi:10.3390/ bdcc7030147

Singam A. Revolutionizing patient care: A Comprehensive review of artificial intelligence applications in anesthesia. Cureus. 2023;15(12). doi:10.7759/cureus.49887

Balasubramanian S, Shukla V, Islam N, Upadhyay A, Duong L. Applying artificial intelligence in healthcare: lessons from the COVID-19 pandemic. Int J Prod Res. 2023:1-34. doi:10.1080/00207543.2023.2263102

Ahmed Z, Mohamed K, Zeeshan S, Dong X. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database. 2020;2020:baaa010. doi: 10.1093/database/baaa010

Krzyszczyk P, Acevedo A, Davidoff EJ, Timmins LM, Marrero-Berrios I, Patel M, White C, Lowe C, Sherba JJ, Hartmanshenn C, O’Neill KM. The growing role of precision and personalized medicine for cancer treatment. Technol (Singap World Sci). 2018;6(03n04):79-100. doi: 10.1142/ S2339547818300020

Alowais SA, Alghamdi SS, Alsuhebany N, Alqahtani T, Alshaya AI, Almohareb SN, et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med Educ. 2023;23(1):689. doi: 10.1186/s12909-023-04698-z

Gabrani G, Gupta S, Vyas S, Arya P. Revolutionizing Healthcare: Impact of Artificial Intelligence in Disease Diagnosis, Treatment, and Patient Care. In: Handbook on Augmenting Telehealth Services. CRC Press. 2024:17-31.

Aslam F. The impact of artificial intelligence on chatbot technology: A study on the current advancements and leading innovations. Eur J Technol. 2023;7(3):62-72. doi: 10.47672/ ejt.1561

Patil S, Shankar H. Transforming healthcare: harnessing the power of AI in the modern era. Int J Multidiscip Sci Arts. 2023;2(1):60-70. doi: 10.47709/ ijmdsa.v2i1.2513

Tello M, Reich ES, Puckey J, Maff R, Garcia-Arce A, Bhattacharya BS, et al. Machine learning based forecast for the prediction of inpatient bed demand. BMC Med Inform Decis Mak. 2022;22(1):55. doi: 10.1186/s12911-022-01787-9

Reddy S, Fox J, Purohit MP. Artificial intelligence-enabled healthcare delivery. J R Soc Med. 2019;112(1):22-8. doi: 10.1177/0141076818815510

Wang F, Preininger A. AI in health: state of the art, challenges, and future directions. Yearb Med Inform. 2019;28(01):016-26. doi: 10.1055/s-0039-1677908

Chan KS, Zary N. Applications and challenges of implementing artificial intelligence in medical education: integrative review. JMIR Med Educ. 2019;5(1):e13930. doi: 10.2196/13930

Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17:1-9. doi: 10.1186/s12916-019-1426-2

Nasr M, Islam MM, Shehata S, Karray F, Quintana Y. Smart healthcare in the age of AI: recent advances, challenges, and future prospects. IEEE Access. 2021;9:145248-70. doi: 10.1109/ ACCESS.2021.3118960

Ștefan AM, Rusu NR, Ovreiu E, Ciuc M. Empowering Healthcare: A Comprehensive Guide to Implementing a Robust Medical Information System—Components, Benefits, Objectives, Evaluation Criteria, and Seamless Deployment Strategies. Applied System Innovation. 2024 Jun 14;7(3):51. DOI: 10.3390/asi7030051

Amann J, Blasimme A, Vayena E, Frey D, Madai VI, Precise4Q Consortium. Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med Inform Decis Mak. 2020;20:1-9. doi: 10.1186/ s12911-020-01332-6

Solanki P, Grundy J, Hussain W. Operationalising ethics in artificial intelligence for healthcare: A framework for AI developers. AI Ethics. 2023;3(1):223-40. doi:10.1007/ s43681-022-00195-z

Díaz-Rodríguez N, Del Ser J, Coeckelbergh M, de Prado ML, Herrera-Viedma E, Herrera F. Connecting the dots in trustworthy Artificial Intelligence: From AI principles, ethics, and key requirements to responsible AI systems and regulation. Inf Fusion. 2023;99: 101896. doi: 10.1016/j.inffus.2023. 101896

Stasevych M, Zvarych V. Innovative robotic technologies and artificial intelligence in pharmacy and medicine: paving the way for the future of health care—a review. Big Data Cogn Comput. 2023;7(3):147. doi: 10.3390/ bdcc7030147

Najjar R. Redefining radiology: a review of artificial intelligence integration in medical imaging. Diagnostics (Basel). 2023;13(17):2760. doi: 10.3390/diagnostics13172760

Adhikary S, Chanda K, Banerjee K, Mukherjee G, Chaudhuri AK. Quantum Leap in Healthcare: Unleashing AI's Epoch of Unprecedented Medical Metamorphosis. In: Applications and Principles of Quantum Computing. IGI Global. 2024:214-235. doi: 10.4018/979-8-3693-1168-4.ch011

Aminizadeh S, Heidari A, Dehghan M, Toumaj S, Rezaei M, Navimipour NJ, et al. Opportunities and challenges of artificial intelligence and distributed systems to improve the quality of healthcare service. Artif Intell Med. 2024;149:102779. doi: 10.1016/ j.artmed.2024.102779

Allioui H, Mourdi Y. Unleashing the potential of AI: Investigating cutting-edge technologies that are transforming businesses. Int J Comput Eng Data Sci (IJCEDS). 2023;3(2):1-2.

Bleher H, Braun M. Diffused responsibility: attributions of responsibility in the use of AI-driven clinical decision support systems. AI Ethics. 2022;2(4):747-61. doi: 10.1007/ s43681-022-00135-x

Johnson KB, Wei WQ, Weeraratne D, Frisse ME, Misulis K, Rhee K, et al. Precision medicine, AI, and the future of personalized health care. Clin Transl Sci. 2021;14(1):86-93. doi:10.1111/ cts.12884

Lebovitz S, Lifshitz-Assaf H, Levina N. To engage or not to engage with AI for critical judgments: How professionals deal with opacity when using AI for medical diagnosis. Organ Sci. 2022; 33(1):126-48. doi: 10.1287/orsc. 2021.1549

Gudala M, Ross ME, Mogalla S, Lyons M, Ramaswamy P, Roberts K. Benefits of, barriers to, and needs for an artificial intelligence–powered medication information voice chatbot for older adults: Interview study with geriatrics experts. JMIR Aging. 2022;5(2). doi: 10.2196/32169

Shaik T, Tao X, Higgins N, Li L, Gururajan R, Zhou X, et al. Remote patient monitoring using artificial intelligence: Current state, applications, and challenges. Wiley Interdiscip Rev Data Min Knowl Discov. 2023;13(2). doi: 10.1002/widm.1485

Alshamrani M. IoT and artificial intelligence implementations for remote healthcare monitoring systems: A survey. J King Saud Univ Comput Inf Sci. 2022;34(8):4687-4701. doi: 10.1016/j.jksuci.2021.06.005

Ullah M, Hamayun S, Wahab A, Khan SU, Rehman MU, Haq ZU, et al. Smart technologies used as smart tools in the management of cardiovascular disease and their future perspective. Curr Probl Cardiol. 2023;48(11):101922. doi: 10.1016/j.cpcardiol.2023.101922

McLennan S, Fiske A, Tigard D, Müller R, Haddadin S, Buyx A. Embedded ethics: a proposal for integrating ethics into the development of medical AI. BMC Med Ethics. 2022;23(1):6. doi: 10.1186/s12910-022-00746-3

Hlávka JP. Security, privacy, and information-sharing aspects of healthcare artificial intelligence. In: Artificial intelligence in healthcare. Academic Press. 2020:235-70. doi: 10.1016/B978-0-12-818438-7.00010-1

Zarour M, Alenezi M, Ansari MT, Pandey AK, Ahmad M, Agrawal A, et al. Ensuring data integrity of healthcare information in the era of digital health. Healthc Technol Lett. 2021;8(3):66-77. doi: 10.1049/htl2.12008

Araujo T, Helberger N, Kruikemeier S, De Vreese CH. In AI we trust? Perceptions about automated decision-making by artificial intelligence. AI Soc. 2020;35:611-623. doi: 10.1007/s00146-019-00931-w

Langer M, Landers RN. The future of artificial intelligence at work: A review on effects of decision automation and augmentation on workers targeted by algorithms and third-party observers. Comput Human Behav. 2021;123: 106878. doi: 10.1016/j.chb.2021. 106878

Reddy S, Allan S, Coghlan S, Cooper P. A governance model for the application of AI in health care. J Am Med Inform Assoc. 2020;27(3):491-7. doi: 10.1093/jamia/ocz192

de Almeida PG, dos Santos CD, Farias JS. Artificial intelligence regulation: a framework for governance. Ethics Inf Technol. 2021;23(3):505-25. doi: 10.1007/s10676-021-09593-z

Carter SM, Rogers W, Win KT, Frazer H, Richards B, Houssami N. The ethical, legal and social implications of using artificial intelligence systems in breast cancer care. Breast. 2020;49:25-32. doi: 10.1016/j.breast.2019.10.001

Char DS, Abràmoff MD, Feudtner C. Identifying ethical considerations for machine learning healthcare applications. Am J Bioeth. 2020; 20(11):7-17. doi: 10.1080/15265161. 2020.1819469

Abràmoff MD, Cunningham B, Patel B, Eydelman MB, Leng T, Sakamoto T, et al. Foundational considerations for artificial intelligence using ophthalmic images. Ophthalmology. 2022;129(2). doi: 10.1016/j.ophtha.2021.08.023

Adeoye S, Adams R. Leveraging Artificial Intelligence for Predictive Healthcare: A Data-Driven Approach to Early Diagnosis and Personalized Treatment. Cogniz. J. Multidiscip. Stud. 2024;4:80-97. DOI: 10.47760/cognizance.2024.v04i11.006

Vatansever S, Schlessinger A, Wacker D, Kaniskan HÜ, Jin J, Zhou MM, et al. Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: State-of-the-art and future directions. Med Res Rev. 2021;41(3):1427-73. doi: 10.1002/ med.21764

Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM. How to conduct a bibliometric analysis: An overview and guidelines. J Bus Res. 2021;133:285-96. doi: 10.1016/j.jbusres.2021.04.070

Pham XL, Le TT. Bibliometric analysis and systematic review of research on expert finding: A PRISMA-guided approach. Int Arab J Inf Technol. 2024;21(4):661-674. doi: 10.34028/ iajit/21/4/9

Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2(4):230-43. doi: 10.1136/svn-2017-000101

Meskó B, Hetényi G, Győrffy Z. Will artificial intelligence solve the human resource crisis in healthcare?. BMC Health Serv Res. 2018;18(1):1-7. doi: 10.1186/s12913-018-3359-4

Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56. doi: 10.1038/s41591-018-0300-7

Bizzo BC, Almeida RR, Michalski MH, Alkasab TK. Artificial intelligence and clinical decision support for radiologists and referring providers. J Am Coll Radiol. 2019;16(9):1351-1356. doi.org:10.1016/j.jacr.2019.06.010

Kumar A, Sharma K, Singh H, Naugriya SG, Gill SS, Buyya R. A drone-based networked system and methods for combating coronavirus disease (COVID-19) pandemic. Future Gener Comput Syst. 2021;115:1-19. doi: 10.1016/j.future.2020.08.046

Maddox TM, Rumsfeld JS, Payne PR. Questions for artificial intelligence in health care. JAMA. 2019;321(1):31-2. doi: 10.1001/jama.2018.18932

Biomedical Research and Health Care: A Literature Review. Biomed Inform Insights. 2016;8:1-10. doi: 10.4137/BII.S3155