Climatic variations and the incidence of dengue fever in Bandung, Indonesia 10.55131/jphd/2023/210317

Main Article Content

Agung Sutriyawan
Martini Martini
Dwi Sutiningsih
Mateus Sakundarno Adi

Abstract

Indonesia is a country endemic to dengue fever—and Bandung is one of the cities in Indonesia that is endemic to dengue fever. There have been efforts to control mosquitoes, one of which is by eradicating their nests, but this step has not optimally reduced the incidence of cases. The increase in cases is thought to have been caused by climatic variations. This study aimed to analyze the relationship between climatic variations (temperature, humidity, and rainfall) and the incidence of dengue hemorrhagic fever (DHF). This study used a correlation design and was carried out in Bandung. This study used secondary data. The samples were taken from data on the number of DHD patients from 2016 to 2021 recorded at the Health Office of Bandung, as well as temperature, humidity, and rainfall data from the Central Bureau of Statistics of Bandung from 2016 to 2021. The correlation between variables was assessed using the person correlation test. Climatic variations that are significantly correlated with the incidence of dengue hemorrhagic fever (DHF) are minimum temperature (p=0.020, and r=-0.658), maximum temperature (p=0.006, and r=-0.739), minimum humidity (p=0.000, and r=0.825), and rainfall (p=0.037, and r=0.605). The increase in the incidence of dengue hemorrhagic fever (DHF) is caused by climatic variations (temperature, humidity, and rainfall). Therefore, it is recommended that mosquito control and DHF surveillance program should be strengthened during the season following the rainy (wet) season.

Article Details

How to Cite
1.
Sutriyawan A, Martini M, Sutiningsih D, Adi MS. Climatic variations and the incidence of dengue fever in Bandung, Indonesia: 10.55131/jphd/2023/210317. J Public Hlth Dev [Internet]. 2023 Sep. 28 [cited 2025 Jan. 15];21(3):222-31. Available from: https://he01.tci-thaijo.org/index.php/AIHD-MU/article/view/264030
Section
Original Articles
Author Biographies

Agung Sutriyawan, Department of Public Health, Bhakti Kencana University, Bandung, Indonesia. Department Master of Epidemiology, Postgraduate School, Diponegoro University, Semarang, Indonesia.

Department of Public Health, Bhakti Kencana University, Bandung, Indonesia

Department Master of Epidemiology, Postgraduate School, Diponegoro University, Semarang, Indonesia. 

Martini Martini, Department of Epidemiology, Faculty of Public Health, Diponegoro University, Semarang, Indonesia

Department of Epidemiology, Faculty of Public Health, Diponegoro University, Semarang, Indonesia

Dwi Sutiningsih, Department Master of Epidemiology, Postgraduate School, Diponegoro University, Semarang, Indonesia

Department Master of Epidemiology, Postgraduate School, Diponegoro University, Semarang, Indonesia

Mateus Sakundarno Adi, Department of Epidemiology, Faculty of Public Health, Diponegoro University, Semarang, Indonesia

Department of Epidemiology, Faculty of Public Health, Diponegoro University, Semarang, Indonesia

References

Wu T, Wu Z, Li Y. Dengue fever and dengue virus in the People’s Republic of China. Rev Med Virol. 2022;32(1):e2245. doi: 10.1002/rmv.2245.

Budianto R, Budiarti N. Dengue Hemorrhagic Fever: Past, Present, and Future. Berkala Kedokteran. 2019;15(1):45–58. doi: 10.20527/jbk.v15i1.6122.

Medlock JM, Leach SA. Effect of climate change on vector-borne disease risk in the UK. Lancet Infect Dis. 2015;15(6):721–30. doi: 10.1016/S1473-3099(15)70091-5.

Ewing DA, Cobbold CA, Purse B V, Nunn MA, White SM. Modelling the effect of temperature on the seasonal population dynamics of temperate mosquitoes. J Theor Biol. 2016;400:65–79. doi: 10.1016/j.jtbi.2016.04.008.

Tran A, L’ambert G, Lacour G, Benoît R, Demarchi M, Cros M, et al. A rainfall-and temperature-driven abundance model for Aedes albopictus populations. Int J Environ Res Public Health. 2013;10(5):1698–719. doi: 10.3390/ijerph10051698.

Christofferson RC, Mores CN. A role for vector control in dengue vaccine programs. Vaccine. 2015;33(50):7069–74. doi: 10.1016/j.vaccine.2015.09.114.

Sutriyawan A, Herdianti H, Cakranegara PA, Lolan YP, Sinaga Y. Predictive Index Using Receiver Operating Characteristic and Trend Analysis of Dengue Hemorrhagic Fever Incidence. Open Access Maced J Med Sci. 2022;10(E):681–7. doi: 10.3889/oamjms.2022.8975.

Samal RF. Analisis Spasial dan Faktor Risiko Kejadian Demam Berdarah Dengue di Kelurahan Tamamaung Kota Makassar. Window of Public Health Journal. 2022;2076–86. doi: 10.33096/woph.v3i4.169.

Sutriyawan A, Wirawati K, Suherdin S. The Presence of Aedes Aegypti Mosquito larvae in Bandung City in 2021. Disease Prevention and Public Health Journal. 2022;16(2):70–7. doi: 10.12928/dpphj.v16i2.5121.

Monintja TCN, Arsin AA, Amiruddin R, Syafar M. Analysis of temperature and humidity on dengue hemorrhagic fever in Manado Municipality. Gac Sanit. 2021;35:S330–3. doi: 10.1016/j.gaceta.2021.07.020.

Abdulsalam FI, Antunez P, Yimthiang S, Jawjit W. Influence of climate variables on dengue fever occurrence in the southern region of Thailand. PLOS Global Public Health. 2022;2(4):e0000188. doi: 10.1371/journal.pgph.0000188.

Sulekan A, Suhaila J, Wahid NAA. Assessing the effect of climate factors on dengue incidence via a generalized linear model. Open Journal of Applied Sciences. 2021;10(04):549. doi: 10.4236/ojapps.2021.104039.

Harrington LC, Fleisher A, Ruiz-Moreno D, Vermeylen F, Wa C V, Poulson RL, et al. Heterogeneous feeding patterns of the dengue vector, Aedes aegypti, on individual human hosts in rural Thailand. PLoS Negl Trop Dis. 2014;8(8):e3048. doi: 10.1371/journal.pntd.0003048.

Prasetyowati H, Fuadzy H, Astuti EP. Pengetahuan, Sikap dan Riwayat Pengendalian Vektor di Daerah Endemis Demam Berdarah Dengue Kota Bandung. ASPIRATOR-Journal of Vector-Borne Disease Studies. 2018;10(1):49–56.

Widyatama EF. Faktor risiko yang berpengaruh terhadap kejadian demam berdarah dengue di wilayah kerja Puskesmas Pare. Jurnal Kesehatan Lingkungan. 2018;10(4):417–23.

Islam MA, Hasan MN, Tiwari A, Raju MAW, Jannat F, Sangkham S, et al. Correlation of Dengue and Meteorological Factors in Bangladesh: A Public Health Concern. Int J Environ Res Public Health. 2023;20(6):5152. doi: 10.3390/ijerph20065152.

Singh PS, Chaturvedi HK. A retrospective study of environmental predictors of dengue in Delhi from 2015 to 2018 using the generalized linear model. Sci Rep. 2022;12(1):1–10. doi: 10.1038/s41598-022-12164-x.

Chumpu R, Khamsemanan N, Nattee C. The association between dengue incidences and provincial-level weather variables in Thailand from 2001 to 2014. PLoS One. 2019;14(12):e0226945. doi: 10.1371/journal.pone.0226945.

Carrington LB, Armijos MV, Lambrechts L, Scott TW. Fluctuations at a low mean temperature accelerate dengue virus transmission by Aedes aegypti. PLoS Negl Trop Dis. 2013;7(4):e2190. doi: 10.1371/journal.pntd.0002190.

Cheng J, Bambrick H, Yakob L, Devine G, Frentiu FD, Toan DTT, et al. Heatwaves and dengue outbreaks in Hanoi, Vietnam: New evidence on early warning. PLoS Negl Trop Dis. 2020;14(1):e0007997. doi: 10.1371/journal.pntd.0007997.

Bayona-Valderrama A, Acevedo-Guerrero T, Artur C. Cities with mosquitoes: A political ecology of Aedes aegypti’s habitats. Water Alternatives [Internet]. 2021 [cited 2023 May 24];14(1):186–203. Available from: https://www.water-alternatives.org/index.php/alldoc/articles/vol14/v14issue1/609-a14-1-4/file

Reinhold JM, Lazzari CR, Lahondère C. Effects of the environmental temperature on Aedes aegypti and Aedes albopictus mosquitoes: a review. Insects. 2018;9(4):158. doi: 10.3390/insects9040158.

Karim MN, Munshi SU, Anwar N, Alam MS. Climatic factors influencing dengue cases in Dhaka city: a model for dengue prediction. Indian J Med Res [Internet]. 2012 [cited 2023 May 15];136(1):32. Available from: https://journals.lww.com/ijmr/Fulltext/2012/36010/Climatic_factors_influencing_dengue_cases_in_Dhaka.7.aspx

Ahmed T, Hyder MZ, Liaqat I, Scholz M. Climatic conditions: conventional and nanotechnology-based methods for the control of mosquito vectors causing human health issues. Int J Environ Res Public Health. 2019;16(17):3165. doi: /10.3390/ijerph16173165.

Naish S, Dale P, Mackenzie JS, McBride J, Mengersen K, Tong S. Climate change and dengue: a critical and systematic review of quantitative modelling approaches. BMC Infect Dis. 2014;14(1):1–14. doi: 10.1186/1471-2334-14-167.

Ramachandran VG, Roy P, Das S, Mogha NS, Bansal AK. Empirical model for estimating dengue incidence using temperature, rainfall, and relative humidity: a 19-year retrospective analysis in East Delhi. Epidemiol Health. 2016;38. doi: 10.4178/epih.e2016052.

Earnest A, Tan SB, Wilder-Smith A. Meteorological factors and El Nino Southern Oscillation are independently associated with dengue infections. Epidemiol Infect. 2012;140(7):1244–51. doi: 10.1017/S095026881100183X.

Descloux E, Mangeas M, Menkes CE, Lengaigne M, Leroy A, Tehei T, et al. Climate-based models for understanding and forecasting dengue epidemics. PLoS Negl Trop Dis. 2012;6(2):e1470. doi: 10.1371/journal.pntd.0001470.

Banu S, Guo Y, Hu W, Dale P, Mackenzie JS, Mengersen K, et al. Impacts of El Niño southern oscillation and Indian Ocean dipole on dengue incidence in Bangladesh. Sci Rep. 2015;5(1):16105. doi: 10.1038/srep16105.

Adde A, Roucou P, Mangeas M, Ardillon V, Desenclos JC, Rousset D, et al. Predicting dengue fever outbreaks in French Guiana using climate indicators. PLoS Negl Trop Dis. 2016;10(4):e0004681. doi: 10.1371/journal.pntd.0004681.

Choi Y, Tang CS, McIver L, Hashizume M, Chan V, Abeyasinghe RR, et al. Effects of weather factors on dengue fever incidence and implications for interventions in Cambodia. BMC Public Health. 2016;16(1):1–7. doi: 10.1186/s12889-016-2923-2.

Kesetyaningsih TW, Andarini S, Sudarto S, Pramoedyo H. Determination of environmental factors affecting dengue incidence in Sleman District, Yogyakarta, Indonesia. Afr J Infect Dis. 2018;12(1S):13–25. doi: 10.21010/ajid.v12i1S.3.