Efficacy of Micropulse Trans-Scleral Cyclophotocoagulation in Lowering Intra-Ocular Pressure and Reducing Anti-Glaucoma Medications among Cambodian Glaucoma Patients
Main Article Content
Abstract
Objective: The micropulse trans-scleral cyclophotocoagulation has been predominantly utilized to reduce intraocular pressure (IOP) in cases of refractory glaucoma. This laser treatment has been extensively used in refractory cases with potentially poor vision, as well as across various type and severities of glaucoma. This study aims to assess the treatment outcomes of micropulse cyclophotocoagulation in Cambodian glaucoma patients.
Materials and Methods: This retrospective study included 14 patients. The review of medical records encompassed pre- and post-treatment variables such as IOP, the amount of anti-glaucoma medications used visual acuity, pain levels, and complications over 14 months. The primary outcome was categorized as success or failure, where success was defined as achieving an IOP between 6- and 21-mm Hg and a minimum 30% reduction in IOP at the final follow-up, with/without the use of medications.
Results: The mean age of patients in this study was 52.36 ± 9.98 years. The mean intraocular pressure prior to treatment was 41.00 ± 12.26 mmHg, decreasing to 21.60 ± 8.11 mmHg (41.56% reduction) at 12 weeks and 16.94 ± 5.46 mmHg (56.04% reduction) at 24 weeks (p < 0.001), with a success rate of 86%. Before treatment, the average number of anti-glaucoma drugs was 3.45 ± 0.89 (2 to 5 drugs). By weeks 12 and 24, that number had dropped to 1.85 ± 1.19 (1 to 3 drugs) and 1.46 ± 1.15 (none to 3 drugs), a drop of 2, p < 0.001. Only 3 eyes (22.43%) have complications, yet there is no apparent change in visual acuity.
Conclusions: This micropulse trans-scleral cyclophotocoagulation is an effective procedure for lowering pressure at any stage of disease and reducing anti-glaucoma medications while avoiding invasive surgeries.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
References:
Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081-2090. doi:10.1016/j.ophtha.2014.05.013
Quigley HA. Number of people with glaucoma worldwide. Br J Ophthalmol. 1996;80(5):389-393. doi:10.1136/bjo.80.5.389
Jawad M, Abdul Qader S, Zaidan A, Zaidan B, Naji A, Abdul Qader I. An Overview of Laser Principle, Laser Tissue Interaction Mechanisms and Laser Safety Precautions for Medical Laser Users. 2011;7(2):149-160.
Quigley HA. Number of people with glaucoma worldwide. [see comments.]. [Review] [54 refs]. Br J Ophthalmol. 1996;80(5):389-393.
Quigley HA. Histological and physiological studies of cyclocryotherapy in primate and human eyes. Am J Ophthalmol. 1976;82(5):722-732. doi:10.1016/0002-9394(76)90009-X
Mandal S, Gadia R, Ashar J. Diode Laser Cyclophotocoagulation. Curr J Glaucoma Pract with DVD. 2009:47-59. doi:10.5005/jp-journals-10008-1015
Kuchar S, Moster MR, Reamer CB, Waisbourd M. Treatment outcomes of micropulse transscleral cyclophotocoagulation in advanced glaucoma. Lasers Med Sci. 2016;31(2):393-396. doi:10.1007/s10103-015-1856-9
Hui Lee J, Shi Y, Amoozgar B, et al. Outcome of micropulse laser transscleral cyclophotocoagulation on pediatric versus adult glaucoma patients. J Glaucoma. 2017;26(10):936-939. doi:10.1097/IJG.0000000000000757
Aquino MCD, Barton K, Tan AMWT, et al. Micropulse versus continuous wave transscleral diode cyclophotocoagulation in refractory glaucoma: A randomized exploratory study. Clin Exp Ophthalmol. 2015;43(1):40-46. doi:10.1111/ceo.12360
Emanuel ME, Grover DS, Fellman RL, et al. Micropulse Cyclophotocoagulation: Initial Results in Refractory Glaucoma. J Glaucoma. 2017;26(8):726-729. doi:10.1097/IJG.0000000000000715
Lee JWY, Yau GSK, Yick DWF, Yuen CYF. Micro pulse laser trabeculoplasty for the treatment of open-angle glaucoma. Med (United States). 2015;94(49):1-6. doi:10.1097/MD.0000000000002075
Masis, md, marisse; Lin, MD, Shan C.; Babic K. Micropulse Transscleral Diode Laser Cyclophotocoagulation: Mid To Long-Term Results. 2015:2162.
Noecker DRJ. The benefits of micropulse TSCPC for early-stage glaucoma treatment. Ophthalmol Times Eur. 2017;glaucoma(November):30-32.
Aquino MCD, Chew PTK. Early Outcomes of Micropulse Diode Transscleral Cyclophototherapy for the Treatment of Mild to Moderate Glaucoma Results. 2015;13(65):119074.
Radcliffe N, Vold S, Kammer JA, et al. MicroPulse Trans-scleral Cyclophotocoagulation (mTSCPC) for the Treatment of Glaucoma Using the MicroPulse P3 Device. 2014;41(8):2013.
Tan AM, Chockalingam M, Aquino MC, Lim ZIL, See JLS, Chew PT. Micropulse transscleral diode laser cyclophotocoagulation in the treatment of refractory glaucoma. Clin Exp Ophthalmol. 2010;38(3):266-272. doi:10.1111/j.1442-9071.2010.02238.x
Aquino MC, Lim D. Micropulse P3 TM ( MP3 ) Laser for Glaucoma : An Innovative Therapy. 2018;12(August):51-52.
Paster S, Signh K, Lee D. A Report by the American Academy of Ophthalmology. Ophthalmology. 2001;6420(01):2130-2138.
Williams AL, Moster MR, Rahmatnejad K, et al. Clinical efficacy and safety profile of micropulse transscleral cyclophotocoagulation in refractory glaucoma. J Glaucoma. 2018;27(5):445-449. doi:10.1097/IJG.0000000000000934
Toyos MM, Toyos R. Clinical Outcomes of Micropulsed Transcleral Cyclophotocoagulation in Moderate to Severe Glaucoma. J Clin Exp Ophthalmol. 2016;07(06):2014-2016. doi:10.4172/2155-9570.1000620
Cecilia M, Max M. Long-term Efficacy of Micropulse Diode Transscleral Cyclophotocoagulation in the Treatment of Refractory Glaucoma. 2015;13(65):119074.
Zaarour K, Abdelmassih Y, Arej N, Cherfan G, Tomey KF, Khoueir Z. Outcomes of Micropulse Transscleral Cyclophotocoagulation in Uncontrolled Glaucoma Patients. 2019;28(3). doi:10.1097/IJG.0000000000001174