Hyper reflective foci on spectral domain optical coherence tomography as a biomarker for predict recurrent rate and visual prognosis in diabetes macular edema.
Main Article Content
Abstract
Purpose: To investigate the correlation between the hyperreflective retinal foci and recurrent rate in diabetes patient after treatment with anti-VEGF
Methods: Review of medical records of 82 patients 101 eyes with diabetes macular edema between 2021 -2023 at Thammasat Hospital which had completed in medical record more than 24 month. We design study to compared recurrent and non recurrent macular edema group. Demographic data, such as age, gender, details of the underlying disease (HbA1c), including biomarkers such as Disorganization of retinal inner layer(DRIL), Hyper reflective retinal foci(HRF), Subretinal fluid(SRF), Intraretinal fluid(IRF) from OCT were collected at baseline.
Results : Hyperreflective retinal foci was notably more abundant in the recurrence group, exhibiting statistically significant disparities (P-value: 0.013). Furthermore, a substantial discrepancy emerged concerning HBA1C levels, with values of 7.5 ± 1.4 in the non-recurrence group and 8.9 ± 2.3 in the recurrence group (P-value: 0.044). Upon a 24-month evaluation, the visual acuity (log MAR) measured at 0.363 ± 0.482 in the non-recurrence group and 0.527 ± 0.206 in the recurrence group, manifesting a notable difference (P-value: 0.033). Hyperreflective retinal foci in the outer retina were markedly more prevalent in the recurrence group compared to the alternative group (P-value: 0.026). Furthermore, the mean count of anti-VEGF injections stood at 10.54 ± 2.58 in the non-recurrence group and 17.82 ± 1.93 in the recurrence group, displaying a statistically significant divergence (P-value: 0.041).
Conclusions : HRF in the outer retina displayed a favorable impact on visual prognosis and a tendency towards recurrence in cases of diabetic macular edema. Furthermore, Hemoglobin A1C emerged as a noteworthy risk factor deserving attention to attain optimal treatment outcomes.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Brownlee, M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes 2005, 54, 1615–1625.
Gonzalez, V.H.; Campbell, J.; Holekamp, N.M.; Kiss, S.; Loewenstein, A.; Augustin, A.J.; Ma, J.; Ho, A.C.; Patel, V.; Whitcup, S.M.; et al. Early and long-term responses to anti-vascular endothelial growth factor therapy in diabetic macular edema: Analysis of protocol I data. Am. J. Ophthalmol. 2016, 172, 72–79.
Romero-Aroca, P.; Baget-Bernaldiz, M.; Pareja-Rios, A.; Lopez-Galvez, M.; Navarro-Gil, R.; Verges, R. Diabetic macular edema pathophysiology: Vasogenic versus inflammatory. J. Diabetes Res. 2016, 2016, 2156273.
Adamis, A.P.; Miller, J.W.; Bernal, M.T.; D’Amico, D.J.; Folkman, J.; Yeo, T.K.; Yeo, K.T. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am. J. Ophthalmol. 1994, 118, 445–450.
Writing Committee for the Diabetic Retinopathy Clinical Research Network; Gross, J.G.; Glassman, A.R.; Jampol, L.M.; Inusah, S.; Aiello, L.P.; Antoszyk, A.N.; Baker, C.W.; Berger, B.B.; Bressler, N.M.; et al. Panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: A randomized clinical trial. JAMA 2015, 314, 2137–2146.
Biomarkers Definitions Working Group. National Institutes of Health Director's Omotoatove on Biomarkers and Surrogate Emdpoints, “Biomarkers and surrogate endpoints: preferred definitions and conceptual framework,” Clinical Pharmacology & Therapeutics, vol. 69, no. 3, pp. 89–95, 2001.
Simó-Servat O, Simó R, Hernández C. Circulating Biomarkers of Diabetic Retinopathy: An Overview Based on Physiopathology. Hindawi. 2016;2016:Article ID 526379
Pusparajah, P.; Lee, L.H.; Abdul Kadir, K. Molecular markers of diabetic retinopathy: Potential screening tool of the future? Front. Physiol. 2016, 7, 200.
Massin P., Girach A., Erginay A., Gaudric A. Optical coherence tomography: a key to the future management of patients with diabetic macular oedema. Acta Ophthalmologica Scandinavica . 2006;84(4):466–474.
Das R, Spence G, Hogg RE, Stevenson M & Chakravarthy U (2018): Disorganization of inner retina and outer retinal morphology in diabetic macular edema. JAMA Ophthalmol 136: 202–208.
Zur D, Iglicki M, Sala-Puigdollers A, Chhablani J, Lupidi M, Fraser-Bell S, Mendes TS, Chaikitmongkol V, Cebeci Z, Dollberg D, Busch C, Invernizzi A, Habot-Wilner Z, Loewenstein A; International Retina Group (IRG). Disorganization of retinal inner layers as a biomarker in patients with diabetic macular oedema treated with dexamethasone implant. Acta Ophthalmol. 2020 Mar;98(2):e217-e223.
Chen K. C., Jung J. J., Curcio C. A., et al. Intraretinal hyperreflective foci in acquired vitelliform lesions of the macula: clinical and histologic study. American Journal of Ophthalmology . 2016;164:89–98.
ujosevic S., Bini S., Torresin T., et al. Hyperreflective retinal spots in normal and diabetic eyes. Retina . 2017;37(6):1092–1103.
Meduri A., Oliverio G. W., Trombetta L., Giordano M., Inferrera L., Trombetta C. J. Optical coherence tomography predictors of favorable functional response in naïve diabetic macular edema eyes treated with dexamethasone implants as a first-line agent. Journal of Ophthalmology . 2021;2021:5.
Al Faran A, Mousa A, Al Shamsi H, et al. Spectral domain optical coherence tomography predictors of visual outcome in diabetic cystoid macular edema after bevacizumab injection. Retina 2014; 34: 1208–1215.
Pelosini L, Hull CC, Boyce JF, et al. Optical coherence tomography may be used to predict visual acuity in patients with macular edema. Invest Ophthalmol Vis Sci 2011; 52: 2741–2748.
Kim KT, Kim DY, Chae JB. Association between hyperreflective foci on spectral-domain optical coherence tomography and early recurrence of diabetic macular edema after intravitreal dexamethasone implantation. J Ophthalmology 2019; 2019: 3459164,
Bolz M, Schmidt-Erfurth U, Deak G, et al. Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema. Ophthalmology 2009; 116: 914–920.
Ota M, Nishijima K, Sakamoto A, et al. Optical coherence tomographic evaluation of foveal hard exudates in patients with diabetic maculopathy accompanying macular detachment. Ophthalmology 2010; 117: 1996–2002.
Uji A, Murakami T, Nishijima K, Akagi T, Horii T, Arakawa N, Muraoka Y, Ellabban AA, Yoshimura N. Association Between Hyperreflective Foci in the Outer Retina, Status of Photoreceptor Layer, and Visual Acuity in Diabetic Macular Edema. Am J Ophthalmol. 2012 Apr;153(4):710-717.e1.
Kang JW, Chung H, Kim HC. Correlation of Optical Coherence Tomographic Hyperreflective Foci with Visual Outcomes in Different Patterns of Diabetic Macular Edema. Retina. 2016;36(9):1630-1639.
Coscas, G., De Benedetto, U., Coscas, F., Li Calzi, C. I., Vismara, S., Roudot-Thoraval, F., et al. (2013). Hyperreflective dots: a new spectral-domain optical coherence tomography entity for follow-up and prognosis in exudative age-related macular degeneration. Ophthalmologica 229, 32–37.
Nagasaka, Y., Ito, Y., Ueno, S., and Terasaki, H. (2018). Number of Hyperreflective foci in the outer retina correlates with inflammation and photoreceptor degeneration in retinitis pigmentosa. Ophthalmol. Retina 2, 726–734.
Narayanan, R., and Kuppermann, B. D. (2017). Intracellular edema. Dev. Ophthalmol. 58, 21–26.
Schreur V, de Breuk A, Venhuizen FG, Sánchez CI, Tack CJ, Klevering BJ, de Jong EK, Hoyng CB. Retinal Hyperreflective Foci in Type 1 Diabetes Mellitus. Retina. 2020 Aug;40(8):1565-1573. Published online 2019 Jul 25
Huang CH, Yang CH, Hsieh YT, Yang CM, Ho TC, Lai TT. Hyperreflective foci in predicting the treatment outcomes of diabetic macular oedema after anti-vascular endothelial growth factor therapy. Published: 03 March 2021.
Khoramnia R, Nguyen QD, Kertes PJ, Ramsay LS, Vujosevic S, Anderesi M, Igwe F, Eter N. Exploring the role of retinal fluid as a biomarker for the management of diabetic macular oedema. Published: 21 July 2023.
Bressler, N. M., Beaulieu, W. T., Glassman, A. R., Blinder, K. J., Bressler, S. B., Jampol, L. M., et al. (2018). Persistent macular thickening following intravitreous aflibercept, bevacizumab, or ranibizumab for central-involved diabetic macular edema With vision impairment: a secondary analysis of a randomized clinical trial. JAMA Ophthalmol. 136, 257–269.
Cunningham, F., Van Bergen, T., Canning, P., Lengyel, I., Feyen, J. H. M., and Stitt, A. W. (2019). The placental growth factor pathway and its potential role in macular degenerative disease. Curr. Eye Res. 44, 813–822.
Wells, J. A., Glassman, A. R., Ayala, A. R., Jampol, L. M., Aiello, L. P., Antoszyk, A. N., et al. (2015). Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N. Engl. J. Med. 372, 1193–1203. .
Bressler NM, Beaulieu WT, Glassman AR, Blinder KJ, Bressler SB, Jampol LM, Melia M, Wells JA 3rd; Diabetic Retinopathy Clinical Research Network. Persistent Macular Thickening Following Intravitreous Aflibercept, Bevacizumab, or Ranibizumab for Central-Involved Diabetic Macular Edema With Vision Impairment: A Secondary Analysis of a Randomized Clinical Trial. JAMA Ophthalmol. 2018 Mar 1;136(3):257-269.
Sarohia GS, Nanji K, Khan M, Khalid MF, Rosenberg D, Deonarain DM, Phillips MR, Thabane L, Kaiser PK, Garg SJ, Sivaprasad S, Wykoff CC, Chaudhary V. Treat-and-extend versus alternate dosing strategies with anti-vascular endothelial growth factor agents to treat center involving diabetic macular edema: A systematic review and meta-analysis of 2,346 eyes. Survey of Ophthalmology. 2022;67(5):1346-1363.
Soman M, Ganekal S, Nair U, Nair KGR. Effect of panretinal photocoagulation on macular morphology and thickness in eyes with proliferative diabetic retinopathy without clinically significant macular edema. Clin Ophthalmol. 2012;6:2013-2017. Published online: 29 Nov 2012.