

Optimization of Trehalose Concentration in Semen Freezing

Extender in Thai Native Chicken Semen

Pachara Thananurak¹ Thevin Vongpralup² Chamaiporn Sittikasamkit²

Kedsirin Sakwiwatkul^{1*}

Abstract

The aim of this study was to find optimal concentration of trehalose supplemented to semen extenders (0, 5, 10, and 15 mM). Ejaculates were collected from 24 Thai native cocks (Pradu Hang Dam; 1 year old), then diluted (1:3) and pooled before allocation to treatments. In the experiment, semen was either cooled to 5°C after dilution or diluted with a pre-cooled diluents before cooling to 5°C. Semen freezing was performed in liquid nitrogen vapor at -135°C and -35°C, with 6% DMF, and compared for sperm qualities. After thawing, it was measured for total sperm motility and progressive motile by CASA. Sperm parameters in terms of viability (PI), acrosome integrity (FITC-PNA), and mitochondrial function (JC-1) were evaluated using flow cytometry. Malondialdehyde concentration was assessed by TBARS for levels of lipid peroxidation and fertility test was carried out by inseminating layer hens. Results showed that the extender supplemented with 5 mM trehalose produced the greatest sperm motility, progressive motile, intact acrosome membrane, mitochondria activity and fertility rates ($P<0.05$).

Keywords: trehalose, cryopreservation, chicken semen

¹Faculty of Technology, Mahasarakham University, Mahasarakham 44150, Thailand

²Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand

*Correspondence: k.sakwiwatkul@gmail.com

Introduction

Artificial insemination is used widely in the ratite industries because there are few realistic alternatives for genetic selection. The ability of sperm to survive cryopreservation and remain functional requires methodologies that are within the biophysical and biological limits defined by the cryo-biological characteristics of each species (Agca and Crister, 2002). In chickens, it is also in terms of the viability and functionality of sperm after cryopreservation, especially the fertility rates from frozen/thawed chicken semen which are consistently low (Long, 2006).

The freezing and thawing of spermatozoa is a complex process that induces several forms of cellular lesions (Purdy, 2006). These lesions have been attributed to cold shock, membrane alteration, osmotic changes and intercellular ice crystals, which may decrease the motility, viability and fertilizing ability of sperm after artificial insemination (Matsuoka et al., 2006). Intracellular ice formation is one of the main damaging factors that reduce the viability of frozen-thawed sperm, and the degree of damage also depends on the composition of the semen extender and nature of the cryoprotectant (Curry et al., 1994). Therefore, cryoprotectants are included in the cryopreservation extender to reduce the damaging effects of the freezing process (Purdy, 2006).

Furthermore, it is known that disaccharides protect the sperm membrane structure from oxidative stress and cold shock damage during the freezing-thawing process. Non-permeant disaccharides have a protective action related to both osmotic effect and specific interactions with membrane phospholipids (Liu et al., 1998).

Trehalose (α -D-glucopyranosyl- α -D-glucopyranoside) is found in a number of plants and animals that can resist dehydration or freezing (Woelders et al., 1997). The action of trehalose appears to be connected with its ability to replace water at the membrane/solution interface (Bakas and Disalvo, 1991). During the dehydration and rehydration of cryopreservation, trehalose interacts with the plasma membrane phospholipids, increases its fluidity, reorganizes the sperm membrane and induces depression in the membrane phase transition temperature of dry lipids. Thus, their sugars probably play a key role in preventing deleterious alteration to membranes during reducing-water state (Fernandes-Santos, 2007). Trehalose is not an antioxidant and has been shown to have a protective effect on the deleterious effects of low temperature on the membranes of bulls (Chen et al., 1993; Woelders et al., 1997; Uysal et al., 2007; Sariozkan et al., 2009; Hu et al., 2010), mice (Storey et al., 1998), rams (Lopez-Saaz et al., 2000; Aisen et al., 2002; Bucak and Tekin, 2007; Bucak et al., 2007; 2008; Uysal and Bucak, 2009; Nur et al., 2010; Cirit et al., 2013; Najafi et al., 2013), buffalo (Reddy et al., 2010), boars (Funahashi and Sano, 2005; Gutierrez-Perez et al., 2009; Hu et al., 2009), dogs (Yildiz et al., 2000; Yamashiro et al., 2007; Michael et al., 2007; Martins-Bessa et al., 2009), rabbits (Dalimata and Graham, 1997; Kozdrowski, 2009) and goats (Aboagla and Terada, 2003; Atesshin et al., 2008; Khalili et al., 2009; Tuncer et al., 2013). It has been of interest to compare trehalose as a membrane stabilizer

with antioxidants to ascertain which action, anti-oxidative or membrane stabilization, may provide the greater protective effect on the sperm (Bacak and Tekin, 2007). Until now, few reports have evaluated the effects of trehalose supplementation in semen extender on chicken spermatozoa after the thawing of sperm. The aim of the present systematic study was to investigate the effects of the addition of trehalose at different doses on the maintenance of sperm motility, intact acrosome membrane, mitochondria activity, malondialdehyde concentration and fertility on post-thaw cryopreserved Thai native chicken spermatozoa.

Materials and Methods

Animal: Twenty-four mature (one year old) Thai native cocks (*Gallus domesticus*; Pradu hang dam) were kept in individual cages. The cockerels were fed 130 g/head/day, and water was provided *ad libitum*. The animals were reared under natural environmental conditions in which they received a natural light dark photo period (11.14L: 12.46D to 13.01L: 11.59D) throughout the experiment.

Semen collection: Semen from 24 individual Thai native cocks was collected two times a week, by the dorso-abdominal massage method (Burrows and Quinn, 1937). Semen from an individual cock was collected in a 1.5 mL micro tube containing 0.1 mL Schramm diluents composed of 0.7 g magnesium acetate, 28.5 g sodium glutamate, 5 g glucose, 2.5 g inositol and 5 g potassium acetate dissolved in 1,000 mL double-distilled water (Schramm, 1991). To maximize semen quality and quantity, the collection was always performed by the same people, under the same conditions, time, and massage method. Ejaculates having good motility ($\geq 85\%$) were used in this study. This research project was approved by Animal Ethics Committee of Khon Kaen University (Approval No: 0514.1.12.2/31).

Semen processing: Schramm diluent was used as the extender. Each pooled ejaculate was split into 4 equal aliquots, diluted with Schramm extender supplemented with trehalose (Sigma-Chemical Co., St. Louis, USA, T0167) (0, 5, 10 and 15 mM), cooled to 5°C in 60 min, and then diluted with DMF (N, N-Dimethylformamide from Sigma-Chemical Co., St. Louis, USA, D-4551) to a final concentration of 6% (v/v) in diluted semen. After 15 min of equilibration, 500 μ l aliquots of treated semen were immediately loaded into 0.5 mL plastic straws to constitute a sperm concentration of 500×10^6 / straw (IMV ref. 005569), and sealed with polyvinylpyrrolidone (PVP) powder (IMV ref. 018818). After equilibration, the filled straws were laid horizontally on a rack 11 cm above the surface of liquid nitrogen (-35°C) for 12 min, then placed 3 cm above liquid nitrogen vapor (-135°C) for 5 min, and subsequently immersed in liquid nitrogen (Vongpralub et al., 2011). After storage, the straws were thawed individually in an ice water bath at 5°C for 5 min and then evaluated for sperm qualities.

Evaluation of post-thaw sperm motion parameters: Post-thaw sperm motion parameters were determined

using computer assisted sperm analysis (CASA) (HTM-IVOS Model 10 Spermatozoa Analyzer; Hamilton Thorne Biosciences, Beverly, MA, USA) attached with Olympus software to process video material recorded in "avi" format. For each sample, two slides (maintained at 37°C) were filled with 5 µL diluted semen and three fields per slide were recorded for 10 sec using a 10x phase-contrast objective (Olympus) in conjunction with a digital camera (Olympus DP 71/25). The instrument setting for computer-assisted semen analysis (CASA) was as follows: apply sort = 0, frames acquired = 30, frame rate = 60 Hz, minimum contrast = 25, minimum cell size 4 pixels, minimum static contrast = 15, straightness (STR) threshold = 80.0%, average path velocity (VAP) cut-off = 5 µm/sec, Prog. Min VAP = 20 µm/sec, VSL cut-off = 20 µm/sec, cell size = 4 pixels, cell intensity = 50, static head size = 0.72 to 8.82, static head intensity = 0.14 to 1.84, static elongation = 0 to 47, slow cell motile = Yes, magnification = 1.92, video frequency = 60 frames/sec, bright field = No (i.e. no bright field), chamber depth = 20 µm, field selection mode = Auto, and integration time = 1 frame. The following motility characteristics were determined: percentage of motile sperm (PMOT), curvilinear velocity (VCL; in µm/sec, average velocity measured over the actual path), VAP (in µm/sec, velocity/average position of sperm), progressive velocity (VSL; in µm/sec, straight-line distance between the beginning and the end of the track/time elapsed), STR coefficient ([VSL / VAP] x 100), and linearity (LIN; departure of the cell track from straight line [VSL / VCL x 100]).

Evaluation of acrosome integrity and mitochondrial function by Fluorescent multiple staining (FMS): Propidium Iodide (PI; Live/dead® sperm viability kit L7011 Invitrogen USA), a red-fluorescent nuclear and chromosome counterstain, was used to identify dead cells. To make a stock solution the solid form was dissolved in deionized water to a concentration of 1 mg/mL (1.5 mM).

Fluorescein isothiocyanate-conjugated peanut agglutinin (FITC-PNA; Sigma L7381) was used to determine acrosome status of viable spermatozoa. FITC-PNA intensely labeled the acrosome region of acrosome-reacted spermatozoa. A stock solution was prepared by dissolving 2 mg of FITC-PNA in 1 mL PBS pH 7.4.

5, 5', 6, 6'-tetrachloro-1, 1', 3, 3' tetraethylbenzimidazolyl-carbocyanine iodide (JC-1; Sigma, C50390) is a selective mitochondrial stain. Cells with a high membrane potential form J-aggregates, thus showing high red fluorescence with JC-1. Cells with a low membrane potential JC-1 maintained their monomeric form, thus showing only green fluorescence. A stock solution of 0.153 mM in dimethylsulfoxide (DMSO) was prepared.

The protocol of multiple fluorescent staining was as follows: semen samples of semen were diluted to a concentration 15x10⁶ spermatozoa/mL with Schramm diluents. Then, 3 µL of PI, 5 µL of FITC-PNA and 2 µL of JC-1 were added to 300 µL aliquots of the diluted semen. The samples were incubated at room temperature for 8 min in the dark. Then, they were centrifuged at 1,200 x g for 3 min and sperm pellets

were resuspended in 500 µL of Schramm extender before cytometric analysis. Measurement was performed on a FACSCalibur (Becton Dickinson, San Jose, CA, USA) flowcytometer in a triple filter, showing set: UV-2E/C (excitation 340-380 nm and emission 435-485 nm), B-2E/C (excitation 465-495 nm and emission 515-555 nm) and G-2E/C (excitation 540-525 nm and emission 605-655 nm) (Adapted from Andrade et al., 2007; Partyka et al., 2011; Consiglio et al., 2013).

Production of reactive oxygen species: Sperm oxidative levels were determined using the thiobarbituric acid (TBA) reaction 250x10⁶ spz/mL. Each treatment was incubated in a solution containing 2.78% ferrous sulfate7H₂O (Ajex, 0906251), 0.1 mL 0.22% butylatedhydroxytoluene (Sigma, B1378) at 37°C for 60 min. The reaction was stopped by adding 1 mL of 35% trichloroacetic acid (Sigma, T6399) and kept on ice for 15 min. The samples were centrifuged at 7,800 x g for 15 min and the supernatant was retained. The progress of endogenous peroxidation was followed by adding 1 mL of 0.36% thiobarbituric acid (Sigma-T550-0) to 2 mL of supernatant. The mixture was boiled for 10 min and allowed to cool. Then, the production of reactive oxygen species was measured by a Carry Conc. UV-Visible Spectrophotometer (Specord 250 plus, Analytikjena) and absorbance levels were acquired by spectrophotometry at 532 nm (Partyka et al., 2007).

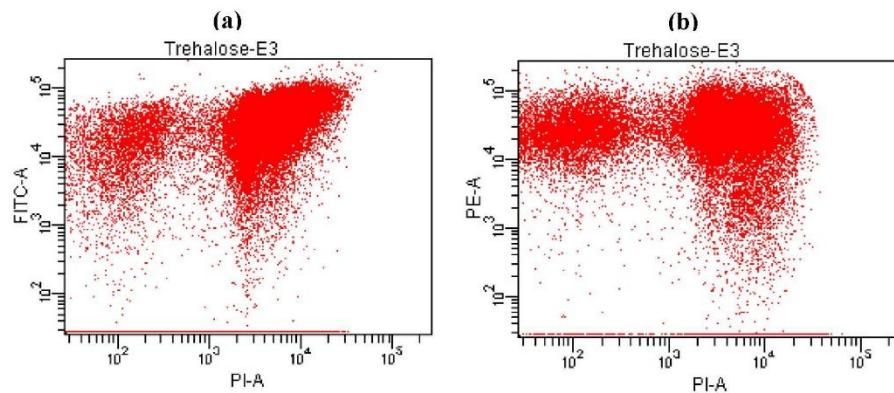
Fertilizing ability test: The fertilizing ability of frozen-thawed spermatozoa was tested by inseminating layer hens aged 43 weeks old once a week with a dose of 0.4 mL. All insemination was performed at 15.00-17.00. Eggs were collected during days 2-8 after insemination. Fertility was determined by candling eggs on day 7 of incubation. Six replications of fertility test were carried out.

Statistical analysis: The experiment was conducted as a randomized complete block design (RCBD) and differences in number of particular categories of spermatozoa in frozen-thawed semen were analyzed with ANOVA and Duncan's multiple range tests. Results are presented as mean±SEM of measurements on samples from 6 replicate determinations (P<0.05).

Results

Sperm characteristics: The effects of varying trehalose concentrations on frozen-thawed chicken sperm motility, progressive motile, intact acrosome membrane and mitochondria activity are shown in Table 1, Fig 1a and 1b. The 5 mM trehalose treatment resulted in greater sperm motility, progressive motility, intact acrosome membrane and mitochondria activity.

Production of lipid peroxidation: The effect of trehalose on lipid peroxidation on thawed chicken semen is shown in Table 2. The addition of trehalose did not cause significant difference in the level of malondialdehyde compared to the control group with no addition.


Fertility ability: This study showed that the effect of trehalose concentrations on the fertility ability of sperm frozen with 5 mM trehalose was significantly

higher than that of the control, 10 mM and 15 mM groups ($P<0.05$) as shown in Table 2.

Table 1 Motility parameters, acrosome integrity and functional mitochondria of frozen-thawed chicken spermatozoa (results expressed as mean \pm SE; n=6).

Parameters (%)	Trehalose concentration (mM/mL)			
	0	5	10	15
Total motility	47.00 \pm 1.12 ^b	53.00 \pm 1.48 ^a	36.75 \pm 1.70 ^c	35.25 \pm 1.50 ^{cd}
Progressive motile	27.25 \pm 1.06 ^a	27.85 \pm 1.00 ^a	26.50 \pm 1.73 ^b	23.25 \pm 1.70 ^c
Live with intact acrosome	28.50 \pm 0.70 ^b	33.30 \pm 1.27 ^a	24.70 \pm 0.84 ^c	24.50 \pm 0.84 ^c
Live with ruptured acrosome	19.70 \pm 0.14 ^a	17.20 \pm 1.27 ^{ab}	13.75 \pm 0.77 ^c	16.20 \pm 1.55 ^b
Live with active mitochondria	45.40 \pm 1.55 ^{ab}	48.75 \pm 0.35 ^a	39.20 \pm 0.28 ^b	36.80 \pm 0.42 ^c
Live with inactive mitochondria	2.80 \pm 0.42	1.80 \pm 0.42	1.65 \pm 0.35	1.50 \pm 0.42

Different letters (^{a, b}) within rows indicate significant differences ($P<0.05$).

Fig 1 Flow cytometric detection of frozen-thawed chicken spermatozoa (a) stained with fluorescein isothiocyanate conjugated peanut agglutinin (FITC-PNA) and propidium iodide (PI) and (b) chicken spermatozoa stained with 5, 5', 6, 6'- tetrachloro 1, 1', 3, 3' tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) (100,000 spz).

Table 2 Malondialdehyde concentration as level of lipid peroxidation (MDA) and percentage of fertility test in frozen-thawed chicken semen (mean \pm SE; n=6).

	MDA (μ M/mL/50 \times 10 ⁶ spz)	Number of set eggs	Fertility (%)
0	1.42 \pm 0.99	235	77.78 \pm 1.79 ^b
Trehalose (mM/mL)	5	243	87.67 \pm 1.26 ^a
10	1.62 \pm 0.90	234	72.29 \pm 1.58 ^c
15	1.54 \pm 0.20	236	70.75 \pm 1.47 ^c

Different letters (^{a, b}) within columns indicate significant differences ($P<0.05$).

Discussion

When cells are frozen, they are subjected to various stresses such as cold shock and oxidative stress, which arise through ice crystallization due to membrane changes (Bilodeu et al., 2000). The efficacy of avian semen cryopreservation depends on many factors, mainly those associated with species, breed, freezing medium (extender and cryoprotectants), procedures of semen equilibration, and freezing and

thawing rates and temperatures (Lukaszewicz, 2006). Trehalose can improve the antioxidant action in semen extender, resulting in better protection of sperm plasma membrane in semen cryopreservation (Aisen et al., 2005). The cryoprotective capacity of trehalose varies depending on the concentration of supplementation in the extenders (Naing et al., 2010).

In this study, it was clear that the supplementation of trehalose to the extender improved chicken semen quality variables and fertilizing ability.

The extender supplemented with 5 mM trehalose resulted in the greatest sperm motility, progressive motile, intact acrosome membrane, mitochondria activity and fertility rates. The current findings were in agreement with many studies and indicated the favorable effects of trehalose on post-thaw sperm quality.

Trehalose has a protective action related to the osmotic effect and to specific interactions with membrane phospholipids, which causes media hypertonic, thereby minimizing the degree of sperm cell injury during the freeze-thaw process (Storey et al., 1998). Sperm plasma membrane is one of the primary sites of damage induced by cryopreservation. It is assumed that trehalose enables the plasma membrane to be less vulnerable to cryo-damage during the freezing and thawing process. Most previous studies in boar (Hu et al., 2009), bull (Hu et al., 2010), goat (Khalili et al., 2009) and ram (Jafaroghli et al., 2011) revealed that trehalose supplementation in semen extender enhanced membrane integrity. The presence of trehalose in an extender is likely to modulate membrane fluidity by inserting itself into membrane phospholipids bilayer, thus it renders membrane more stable during freezing (Aboagla and Terada, 2003). Aisen et al. (2002) observed a favorable effect of the reduced trehalose concentration on sperm motility and a deleterious effect of the greater trehalose concentration, which are consistent with our previous observations carried out in boar semen (Hu et al., 2009).

The integrity of sperm acrosome membrane associated with sperm motility can be expected to be destroyed by high concentration of trehalose. In the present study, the greatest protective effects of trehalose were at the concentration of 100 mM, and a much reduced extent at 200 mM. The latter concentration resulted in increased osmolarity of the extender as the extender was deleterious to the sperm cells (Hu et al., 2009). When trehalose concentration was 200 mM, the percentages of motile sperm and intact acrosomal membrane sperm of frozen-thawed bovine semen decreased. Reddy et al. (2010) reported that trehalose had the capacity to reduce this cryoacquisition and maintained the acrosomal integrity. The results of this study showed that 100 mM trehalose supplementation to the extender could significantly reduce ($P<0.05$) what? after freezing and thawing. Similarly, studies in dogs (Yildiz et al., 2000) and boar (Hu et al., 2009) concluded that trehalose helped to reduce acrosomal abnormalities occurring during cryopreservation. Because trehalose helps to diminish acrosomal damage and enhance membrane fluidity during cryopreservation, it ultimately affects fertility. A limited number of studies have been conducted to evaluate the fertility of sperm frozen with trehalose.

In this study, the extender supplemented with 5 mM trehalose resulted in adjective? fertilizing ability (87.67%) in the frozen/thawed chicken semen. Sztein et al. (2001) reported that the frozen/thawed sperm cryoprotected with trehalose retained significantly better *in vitro* fertility (79%) than the control (11%) in mice; however, percentage of offspring born was the same. Similarly, 45 to 47% lambing was obtained in ewes inseminated with

sperms cryopreserved in 100 mM trehalose extender, which was 2.5 times higher than the control (Aisen et al., 2002). In another study, a significant difference was recorded in fertility rates (49.8% vs 16.7%) in ewes following AI with frozen-thawed 100 mM trehalose treated or control semen (Jafaroghli et al., 2011). In contrast, the addition of trehalose to an extender did not improve the fertility of frozen-thawed bull semen (Foote et al., 1993) and European brown hare semen (Kozdrowski, 2009).

This report examined the effect of trehalose on the cryosurvival of chicken semen. The addition 5 mM dose of trehalose will be useful for increasing the post-thaw quality and fertility rate of Thai native chicken semen.

In conclusion, the presence of balanced amounts of trehalose (5 mM) in the extender during the freezing-thawing process could provide chicken semen with quality and fertility.

Acknowledgements

The authors would like to thank the Research and Development Network Center for Animal Breeding (Native Chicken), and the Department of Animal Science, Faculty of Agriculture, Khon Kaen University for supporting this animal experiment. We also would like to thank the Institute of Agricultural Technology, Suranaree University of Technology and Faculty of Technology, Mahasarakham University.

References

- Aboagla EME and Terada T 2003. Trehalose-enhanced fluidity of the goat sperm membrane and its protection during freezing. *Biol Reprod.* 69: 1245-1250.
- Agca Y and Crister JK 2002. Cryopreservation of spermatozoa in assisted reproduction. *Semin. Reprod Med.* 20: 15-23.
- Aisen EG, Medina VH and Venturino A 2002. Cryopreservation and post-thawed fertility of ram semen frozen in different trehalose concentrations. *Theriogenology.* 57: 1801-1808.
- Aisen E, Quintana M, Medina V, Morello H and Venturino A 2005. Ultramicroscopic and biochemical changes in ram spermatozoa cryopreserved with trehalose-based hypertonic extender. *Cryobiology.* 50: 239-249.
- Andrade AFC, Arruda RP, Celeghini ECC, Nascimento J, Martins SMMK, Rephael CF and Moretti AS 2007. Fluorescent stain method for the simultaneous determination of mitochondrial potential and integrity of plasma and acrosome membranes in boar sperm. *Reprod Dom Anim.* 42: 190-194.
- Atessahin A, Bucak MN, Tuncer PB and Kizil M 2008. Effect of antioxidant additives on microscopic and oxidative parameters of Angora goat semen following the freeze-thawing process. *Small Rumin Res.* 77: 38-44.
- Bakas LS and Disalvo EA 1991. Effect of Ca^{2+} on the cryoprotective action of trehalose. *Cryobiology.* 28: 347-353.

Bilodeau JF, Chatterjee S, Sirard MA and Gagnon C 2000. Levels of antioxidant defenses are decreased in bovine spermatozoa after a cycle of freezing and thawing. *Mol Reprod Dev.* 55: 282-288.

Bucak MN, Atessahim A, Varisli O, Yuce A, Tekin N and Akcay A 2007. The influence of trehalose, taurine, cysteamine and hyaluronan on ram semen: microscopic and oxidative stress parameters after the freeze-thawing process. *Theriogenology.* 67: 1060-1067.

Bucak MN and Tekin N 2007. Protective effect of taurine, glutathione and trehalose on the liquid stronge of ram semen. *Small Rumin Res.* 73: 103-108.

Bucak MN, Atessahin A and Yuce A 2008. Effect of anti-oxidants and oxidative stress parameters on ram semen after the freeze-thawing process. *Small Rumin Res.* 75:128-134.

Burrows WH and Quinn JP 1937. The collection of spermatozoa from the domestic fowl and turkey. *Poult Sci* 16: 19-24.

Chen Y, Foot RH and Brockett CC 1993. Effcct of sucrose, trehalose, hypotaurine, taurine, and blood serum on survival of frozen bull sperm. *Cryobiology.* 30: 423-431.

Cirit U, Haydar B, Kamber D, Cansu A, Serhat P, Omer V, Clifford-Rathert C and Yuksul A 2013. Comparison of cryoprotective effect of iodixanol, trehalose and cysteamine on ram semen. *Anim Reprod Sci.* 139: 38-44.

Consiglio AL, Meucci A and Cremonesi F 2013. Fluorescent multiple staining and CASA system to assess boar sperm viability and membranes integrity in short and long-term extenders. *Open Vet J* 3: 21-35.

Curry MR, Millar JD and Watson PF 1994. Calculted optimal cooling rate for ram and human sperm cryopreservation fail to confirm with empirical observations. *Biol Reprod.* 51: 1041-1021.

Dalimata AM and Graham JK 1997. Cryopreservation of rabbit spermatozoa using acetamide in combination with trehalose and methyl cellulose. *Theriogenology.* 48: 831-841.

Fernandez-Santos MR, Martinez-Pastor F, Garcia-Macias V, Esteso MC, Soler AJ, dePaz P, Anel L and Garde JJ 2007. Extender osmolality and sugar supplementation exert a complex effect on the cryopreservation of Iberian red deer (*Cervus elaphus hispanicus*) epididymal spermatozoa. *Theriogenology.* 67: 738-753.

Foot RH, Chen Y, Brockett CC and Kaproth MT 1993. Fertility of bull spermatozoa frozen in whole milk extender with trehalose, taurine, or blood serum. *J Dair Sci.* 76: 1908-1013.

Funahashi H and Sano T 2005. Select antioxidants improve the function of extended boar semen stored at 10 degrees C. *Theriogenology.* 63: 1605-1616.

Gutierrez-Perez O, Juarez-Mosqueda ML, Carvajal SU and Ortega MET 2009. Boar Spermatozoa cryopreservation in low glycerol/trehalose enriched freezing media improves cellular integrity. *Cryobiology.* 58: 287-292.

Hu JH, Li QH, Li G, Jiang ZL, Bu SH and Yang H 2009. The cryoprotective effect of trehalose supplementation on boar spermatozoa quality. *Anim Reprod Sci.* 112: 107-118.

Hu JH, Zan LS, Zhao XL, Li QW, Jiang ZL, Li YK and Li X 2010. Effect of trehalose supplementation on semen quality and oxidative stress variables in frozen-thawed bovine semen. *J Anim Sci.* 88: 1657-1662.

Jafaroghi M, Khalili B, Farshad A and Zamiri MJ 2011. The effect of supplementation of cryopreservation diluents with sugars on the post-thawing fertility of ram semen. *Small Rumin Res.* 96: 58-63.

Khalili B, Farshad A, Zamiri MJ, Rashidi A and Fazeli P 2009. Effects of sucrose and trehalose on the freezability of Markhuz goat spermatozoa. *Asian-Australasian J Anim Sci.* 22: 1614-1619.

Kozdrowski R 2009. The effect of trehalose on post-thaw viability and fertility of European brown hare (*Lepus europaeus* Pallas, 1778) spermatozoa. *Anim Reprod Sci.* 116: 326-334.

Liu Z, Foote RH and Brockett CC 1998. Survival of bull sperm frozen at different rates in media varying in osmolarity. *Cryobiology.* 37: 219-230.

Long JA 2006. Avian semen cryopreservation: What are the biological challenges. *Poult Sci.* 85: 232-236.

Lopez-Saaz A, Ortiz N, Gallego L and Gadre JJ 2000. Liquid storage (5 °C) of ram semen in different diluents. *Arch Androl.* 44: 155-164.

Lukaszewicz E 2006. Charecteristics of fresh gander semen and its susceptibility to cryopreservation in six generations derived from geese inseminated with frozen-thawed semen. *Cryo Lett.* 27: 51-58.

Matsuoka T, Imai H, Kohno H and Fukui Y 2006. Effect of bovine serum albumin in trehalose in semen diluents for improvement of frozen-thawed ram spermatozoa. *J Reprod Developm.* 52: 675-683.

Martins-Bessa A, Rocha A and Mayenco-Aguirre A 2009. Effects of taurine and hypotaurine supplementation and ionophore concentrations on post-thaw acrosome reaction of dog spermatozoa. *Theriogenology.* 71: 248-253.

Michael A, Alexopoulos C, Pontiki E, Hadjipavlou-Litina D, Saratsis P and Boscas C 2007. Effect of antioxidant supplementation on semen quality and reactive oxygen species of frozen-thawed canine spermatozoa. *Theriogenology.* 68: 204-212.

Najafi A, Zhandi M, Towhidi A, Sharafi M, Sharif AA, Motlagh MK and Martinez-Pastor F 2013. Trehalose and glycerol have a dose-dependent synergistic effect on the post-thawing quality of ram semen cryopreserved in a soybean lecithin-based extender. *Cryobiology.* 66: 275-282.

Naing SW, Wahid H, Mohd KA, Rosrina Y, Zuki AB, Kazhal S, Bukar MM, Thein M, Kyaw T and San MM 2010. Effect of sugars on characteristics of Boer goat semen after cryopreservation. *Anim Reprod Sci.* 122: 23-28.

Nur Z, Zik B, Ustuner B, Sagirkaya H and Ozguden CG 2010. Effects of different cryoprotective agents on ram sperm morphology and DNA integrity. *Theriogenology.* 73: 1267-1275.

Partyka A, Jerysz A and Pokorny P 2007. Lipid peroxidation in fresh and storage semen of Green-legged partridge. *EJPAU* 10(2), [Online]. Available :<http://www.ejpaup.media.pl/volume10/issue2/art-08.html>

Partyka A, Lukaszewicz E, Nizanski W and Twardon J 2011. Detection of lipid peroxidation in frozen-thawed avian spermatozoa using C₁₁-BODIPY_{581/591}. *Theriogenology*. 75: 1623-1629.

Purdy P H 2006. A review on goat sperm cryopreservation. *Small Rumin Res.* 63: 215-225.

Reddy NSS, Mohanarao GJ and Atreja SK 2010. Effect of adding taurine and trehalose to a tris-based egg yolk extender on buffalo (*Bubalusbubalis*) sperm quality following cryopreservation. *Anim Reprod Sci.* 119: 183-190.

Sariozkan S, Bucak MN, Tuncer PB 2009. The influence of cysteine and taurine on microscopic-oxidative stress parameters and fertilizing ability of bull semen following cryopreservation. *Cryobiology*. 58: 134-138.

Schramm GP 1991. Suitability of different antifreeze agents for cryoprotection of cock sperm. *Monatsh. Veterinarmed.* 46:438-440.

Storey BT, Noiles EE and Thompson KA 1998. Comparison of glycerol, other polyols, trehalose and raffinose to provide a defined cryoprotectant medium for mouse sperm cryopreservation. *Cryobiology*. 37: 46-58.

Sztein JM, Noble K, Farley JS and Mobraaten LE 2001. Comparison of permeating and non permeating cryoprotectants for mouse sperm cryopreservation. *Cryobiology*. 41: 28-39.

Tuncer PB, Umut T, Serhat B, Taner O, Erdem C, Erol H, Aydin FN and Gurcan, IS 2013. Effect of different doses of trehalose supplementation in egg yolk extender in Frozen-thawed Angora buck semen. *Small Rumin Res* 113: 383-389.

Uysal O, Bucak MN, Yavas I and Varish O 2007. Effect of various antioxidants on the quality of frozen-thawed bull semen. *J Anim Vet Adv.* 6: 1362-1366.

Uysal O, and MN Bucak. 2009. The role of different trehalose concentrations and cooling rates in freezing of ram semen. *Ankara Univ Vet FakDerg.* 56: 99-103.

Vongpralub T, Utha A, Pongpeng J, Sonseeda P and Yindee W 2011. A comparison of simple vapour method and programmable freezer on motility and fertility of frozen Thai native chicken semen. The 3rd International conference on sustainable animal agriculture for developing countries (SAADC 2011). 649-652.

Woelders H, Matthij A and Engel B 1997. Effects of trehalose and sucrose, osmolality of the freezing medium and cooling rate on viability and intactness of bull sperm after freezing and thawing. *Cryobiology*. 35: 93-105.

Yamashiro H, Narita K, Sugimura S, Han YJ, Sugawara A, Morohaku K, Nakazato F, Konno T, Yoshida M and Sato E 2007. Trehalose enhanced the freezability of Poodle dog sperm collected by an artificial vagina (AV). *Anim Reprod Sci.* 102: 165-171.

Yildiz C, Kaya A, Aksoy M and Tekeli T 2000. Influence of suger supplementation of the extender on motility, viability and acrosomalintegrity of dog spermatozoa during freezing. *Theriogenology*. 54: 579-585.

บทคัดย่อ

ผลของการเสริมทรีฮาโลสระดับที่แตกต่างกันในน้ำยาเจือจางน้ำเชื้อไก่ที่ผ่านการเก็บรักษาด้วยวิธีการแช่แข็ง

พัชรา ธนาธุรักษ์¹ เทวินทร์ วงศ์พระลักษ์² ชนัยพร สิทธิไกษนกิจ²
เกษคิรินทร์ ศักดิ์วิวัฒนกุล^{1*}

การศึกษานี้มีวัตถุประสงค์เพื่อศึกษาผลของการเสริมทรีฮาโลสที่ระดับ 0, 5, 10 และ 15 มิลลิเมลในน้ำยาเจือจางสูตร Schramm ในไก่พันธุ์ประดุจดำอย่างน้ำเชื้อมาเจือจางในน้ำยาเจือจางที่อัตราส่วน 1:3 และใช้ DMF เป็นสารป้องกันความเสียหายจากการแช่แข็งที่ระดับ 6 เปอร์เซ็นต์ของบริมารน้ำเชื้อ ทำการลดอุณหภูมิไปที่ 5 องศาเซลเซียส และบรรจุน้ำเชื้อในหลอดพลาสติกขนาด 0.5 มิลลิลิตร ซึ่งมีอุณหภูมิ 500x10⁶ ตัว/หลอด ทำการแช่แข็งโดยวิธีอั่วในตู้เรเจนทรัลที่อุณหภูมิ -35 องศาเซลเซียส และ -135 องศาเซลเซียส จากนั้นเก็บรักษาในตู้เย็นและ ภายหลังการละลายน้ำเชื้อทำการประเมินอัตราการเคลื่อนที่ของอ่อน化โดย CASA ประเมินอัตราการรอดชีวิต ความสมบูรณ์ของอะโครโซม และการทำางของไมโตคอนเดรีย โดยการข้อมสีฟลูออเรสเซนต์ชนิด PI FITC-PNA และ JC-1 จากนั้นนำไปวิเคราะห์ด้วย flow cytometer ประเมินอัตราการเกิด ROS โดยวิเคราะห์จากความเข้มข้นของบริมาน Malondialdehyde โดยวิธี TBARS และทดสอบความสมบูรณ์พันธุ์และอัตราการผสุมติดโดยการผสุมเทียมในแม่ไก่ที่พันธุ์ทางการค้า จากการศึกษาพบว่าการเสริมทรีฮาโลสที่ระดับ 5 มิลลิเมลในน้ำยาเจือจางสามารถป้องปกรอตราชารการเคลื่อนที่ อัตราการรอดชีวิต ความสมบูรณ์ของอะโครโซม การทำงานของไมโตคอนเดรียภายหลังการเก็บรักษาด้วยวิธีแช่แข็ง และอัตราการผสุมติดได้ ($P<0.05$)

คำสำคัญ: ทรีฮาโลส การเก็บรักษาด้วยวิธีการแช่แข็ง น้ำเชื้อไก่

¹คณะเทคโนโลยี มหาวิทยาลัยมหาสารคาม มหาสารคาม 44150

²คณะเกษตรศาสตร์ มหาวิทยาลัยขอนแก่น ขอนแก่น 40002

*ผู้รับผิดชอบบทความ E-mail: k.sakwiwatkul@gmail.com