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Acute Toxicity Study of Nanosilver Particles in Tilapia
(Oreochromis niloticus): Pathological Changes, Particle

Bioaccumulation and Metallothionien Protein Expression
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Abstract

An acute toxicopathological study of silver nanoparticles (AgNPs) was conducted in concentrations of 0, 1, 10
and 100 ppm in adult tilapia (Oreochromis niloticus) at days 0, 1, 2, 3 and 4. Mortality, clinical sign, histopathology and
immunohistochemistry were observed and evaluated. Calculated LC,  at 24 hr was 53 ppm. The major clinical sign was

respiratory distress. Histopathologic lesions were found mainly in gill, kidney, spleen and liver. Severity of the lesions
depended on the concentration and exposure time. Superoxide dismutase (SOD) positive immunostaning was found
in gill and renal tubular epithelium. Metallothionein (MT) positive staining was observed in renal tubular epithelium.
Autometallography (AMG) positive grains were found in gill and gastrointestinal tract. In summary, AgNPs could
cause acute toxicity to tilapia in a concentration and exposure time-dependent manner. Oxidative stress may be
involved in the pathogenesis of acute AgNPs exposure. Moreover, the expression of MT in tissues responded to AgNPs
accumulation.
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Introduction

Nanosilver particles (AgNPs) have been used
extensively in a variety of research and industrial
fields. Nowadays, AgNPs can be found in a lot of daily
consumer products. Some products containing AgNPs
such as detergents and wound dressings are
increasingly and broadly used and possibly end up in
the environment during waste disposal. Because of
their wide and rapid use, contamination of the
environment with AgNPs has received a lot of concern.
Several studies reported that nanoparticles were
exposed to the environment (Hund-Rinke et al., 2006;
Moore, 2006; Wiench et al., 2009; Van Hoecke et al.,
2011) and had significant effects on aquatic life
organisms. Luoma and colleagues (2008) reported that
AgNPs in either nanoparticle or ion form could enter
and accumulate in living aquatic organisms.
Environmental effects of nanoparticles are still
questionable and remain unresolved.

Using natural-source-water fish as an
environmental biomarker is very useful and may help
to assess the risk of toxic substance consumption of
human (Oliveira-Ribeiro et al., 2002; Jewett and
Duffey, 2007; Raldta et al, 2007). Tilapia fish
(Oreochromis niloticus) is a widely distributed fresh
water fish that is important in aquaculture (Maclean et
al., 2002; Eroglu et al., 2005). Tilapia is one of the most
favorite fish in Thai cuisine, resulting in culture
making the highest yields from it and total values of
production more than all freshwater fish (Fishery
statistic analysis and research group, 2005). Tilapia can
directly be exposed to high concentration of toxic
substances and chemicals because caged culture
involves mostly natural water sources and takes more
than 6 months. In case of environmental toxicological
studies, tilapia was used as the animal model in many
researches because of its tolerance to water pollutants
(Atli and Canli, 2003; Cheung et al., 2004; Cheung et al.,
2005).

To study the distribution and accumulation of
AgNPs in fish tissue, autometallography (AMG) was
performed in this study. AMG 1is a potent
histochemical staining that is used to determine heavy
metals accumulation in the cells of fish and other
species (Loumbourdis and Danscher, 2004; Alvarado et
al., 2006). Several toxicity studies used the AMG
technique to detect small amount of heavy metal in the
cells of various kinds of animals (Woshiner et al., 2002;
Danscher and Stoltenberg, 2006). In our previous
study, we used AMG histochemical techniques to
demonstrate the in situ deposition and distribution of
AgNPs in the lungs and hilar lymph nodes of mice
(Kaewamatawong et al., 2013).

To protect from oxidative harmful reaction, cells have
developed a free-radical scavenging process by various
kinds of antioxidant enzymes including superoxide
dismutase, catalase and glutathione peroxidase.
Superoxide dismutases are primary antioxidant
enzymes that scavenge ROS by catalyzing the
dismutation reaction of the superoxide anion to
hydrogen peroxide. Several in vitro mnanotoxicity
studies revealed the association between the free-
radical generation and SOD scavenging activity. Dey
and colleagues (2008) demonstrated the increase in
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manganese superoxide dismutase (MnSOD) protein
levels induced by nanosized alumina in mouse skin
epithelial cells. A decrease in SOD and glutathione
(GSH) level that is associated with generation of
peroxy radicals after AgNPs exposure to human
fibrosarcoma (HT-1080) and human skin/carcinoma
(A431) cells was reported (Arora et al., 2008). In this
study, we tried to demonstrate the expression of SOD
that may relate to AgNPs exposure in fish tissues.

Metallothionein (MT) is a low molecular
weight (6,000-7,000) and cystein-rich protein with high
affinity for divalent cations such as Ag?*, Cd?*, Cu?+,
Zn?* and Hg?* (Lau et al., 2001; Wu et al., 2008; Gao et
al., 2009). Although the role of MT is still unclear, it is
believed that MT is involved in regulation of essential
metals such as Zn and detoxification of non-essential
metal ions such as Cd, Pb and Hg (Chan, 1994; Cheung
et al.,, 2004). Several researches reported that heavy
metals could induce MT gene and protein in many fish
species and could reduce potential toxicity of heavy
metal residues and therefore it can be used as a
biomarker for heavy metal contamination in polluted
water (Cheung et al., 2005; Quirés et al.,, 2007). The
expression of MT in tissues responding to heavy metal
exposure has been reported in various kinds of
organisms and animals (Alvarado et al., 2006;
Kaewamatawong et al., 2012). The protective role of
MT from silver nanomaterials is still unknown. There
is no report of MT expression in vivo study caused by
exposure to AgNPs in aquatic organisms. At present,
there is little information about AgNPs toxicity
especially in aquatic environments in terms of
pathological studies. Therefore, the purpose of this
study was to investigate the acute toxicopathological
changes of AgNPs on Nile tilapia. Pathogenesis and
protective response were also elucidated.

Materials and Methods

Preparation and characterization of AgNPs: High
concentration of colloidal AgNPs solution was
synthesized via a chemical reduction process
according to the method previously described
(Maneewattanapinyo et al., 2011). Briefly, a 0.094 M
aqueous solution of silver nitrate (AgNOs;; Merck) was
prepared with soluble starch (Merck) as a stabilizer. An
aqueous solution of 0.07 M sodium borohydride
(NaBH4; Merck) reducing agent with the soluble starch
solution as a solvent was sequentially prepared. By
mixing both solutions, the AgNO3 solution was added
dropwise to the NaBHj4 solution under a vigorous stir.
A dark cloud appeared and turned to yellowish brown
within a few seconds. When all reactants were
completely added, the solution turned dark brown.
Purification of the AgNPs was precipitated by using
centrifugation. Then, the precipitates of AgNPs were
washed three times with DI water and adjusted to the
same volume before dilution. The synthetic AgNPs
were very pure (99.96%) and the Ag ions were very low
in concentration (less than 0.04%). The AgNPs
solutions were diluted with distilled water to obtain
various concentrations of AgNPs prior to use. The
particle morphology of AgNPs was observed using
JEOL JEM-2010 analytical transmission electron
microscope. The AgNPs had a spherical configuration
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with a primary particle diameter of 10-20 nm. The
plasmon extinction of AgNPs measured by Ocean
Optics Portable UV-Visible spectrometer (USB 4000-
UV-VIS detector) showed that the size distribution of
AgNPs was narrow.

Experimental animals: Tilapias (Oreochromis niloticus),
25-50 g in weight and 9-12 cm in length, were obtained
from Veterinary Medical Aquatic Research Center
(VMARC), Chulalongkorn University. They were
maintained in 62.5-liter glass aquaria filled with 50-
liter tap water, where the experiment was conducted.
The animals were acclimated to laboratory condition
for one week before the experiment. Air pump with
aquarium foam sponge filter was used for the aeration
system. Water temperature, pH and dissolved oxygen
(DO) were measured daily during the experiment. The
average temperature was 27.14+0.39°C, pH was
7.30£0.11 and DO was 9.56+0.60 mg/1. All fish were fed
twice daily on commercial food ad libitum throughout
the experimental period. The tap water in the aquaria
was changed every two days. All animal experiments
were proved by the ethics committee of Chulalongkorn
University Animal Care and Use Committee (CU-
ACUCQ).

Experimental design: The tilapias were randomly
divided into 1 control and 3 exposure groups of 15
animals each. The tilapias were raised in the aquaria
which contained 1, 10, and 100 ppm AgNPs,
respectively. One container of 15 tilapias was kept as
an unexposed control group in the same condition. The
animals in each group were sacrificed at 0, 1, 2, 3 and 4
days after exposure.

Sample collection: The fish were euthanized by rapid
cooling with ice and necropsy was performed. After
gross examination, the kidney, liver, spleen, gill, gut
(stomach and intestine), brain, and muscle tissues were
collected and preserved in 10% neutral buffered
formalin. The tissues were routinely histologically
processed. After paraffin embedding, 4 pm sections
were cut and stained with hematoxylin and eosin
(H&E) for histopathologic evaluation,
autometallography staining and
immunohistochemistry.

Immunohistochemistry: The tissue samples from
various organs of the control and treated tilapias were
immunostained to detect antioxidant enzymes (Cu/Zn
SOD) and MT. After deparaffinization, the sections
were treated with citrate buffer solution (pH= 5.4-6.0)
for 20 min at 121°C by autoclave and microwave heat
at 700 W for 5 min in the process of antigen retrieval.
The sections were incubated with 3% H>O; in methanol
to quench endogenous peroxidase for 30 min at room
temperature. The slides were then blocked with 10%
normal goat serum (for detection of Cu/Zn SOD) for 5
min in microwave oven 250 w or 1% bovine serum
albumin (for detection of MT) for 30 min at 37°C.
Thereafter, the sample and positive control sections
were incubated overnight at 4°C with primary
antibodies (polyclonal rabbit anti-Cu-Zn SOD Ab,
Stressgen Bioreagents, Victoria, Canada, 1:200 dilution;
and monoclonal mouse anti-MT Ab, Dako®, Glostrup,
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1:50 dilution). On the other hand, the negative control
sections were incubated with phosphate buffered
saline. The biotinylated anti-mouse IgG antibody and
EnVision polymer (DakoREALT™™ EnVision™ detection
system, Dako®, Denmark) were reacted to sections as a
secondary antibody. Brown staining with the substrate
3,3’-diaminobenzidine tetrahydrochloride (DAB) was
determined as a positive result and the sections were
counterstained with Mayer’s hematoxylin for 30 sec.

Autometallography: The tissue sections from various
organs were performed for detecting intracellular
mercury deposition. After deparaffinization, other
metal residues were eliminated by incubating the
sections with 1% KCN for 2 h and rinsed well with tap
water and distilled water (DW). The sections were
incubated with physical developer (50% Arabic gum,
50% citrate buffer, 5.6% hydroquinone, and 17%
AgNO:3) to silver amplification for 1 h in an automatic
shaker at 26°C and then with 10% sodium thiosulfate
and Farmer’s solution (20% sodium thiosulfate and
7.5% potassium ferric cyanide) to eliminate silver
residues. Thereafter, the sections were rinsed in tap
water and counterstained with Mayer’s hematoxylin.
Positive reactions resulted in yellow-brown to black
silver grains in the cells. The sections were observed
under a light microscope to identify cell types and
locations of silver grains deposition. Scores were given
by positive staining degrees and intensity of silver
grains in each cell.

Statistical analysis: Data in the graphs are presented
as percentage. The data were analyzed using analysis
of variance (ANOVA). Values of P < 0.05 were
considered as the level statistical significance. All
statistical analyses were carried out using the SPSS
statistical software for Windows, version 12.

Results

Clinical and macroscopic findings: In the control and 1
ppm AgNPs treated fish, there were no exposure-
related clinical signs in any observation times. Tilapias
of both 10 and 100 ppm groups showed respiratory
distress characterized by swimming to surface of
water, rapid opercula movements and dyspnea after a
few hours post-exposure. The mortality of tilapias was
observed at days 0-4 post-exposure. At day 1, a
significant increase in mortality was observed in the
100 ppm AgNPs treated fish (Fig 1). Calculated median
lethal concentration (LC, ) at 24 hr of AgNPs to the Nile

tilapia was 53 ppm (nug/ml).

Grossly, there was no remarkable lesion in the
control group in any observation times. In both 10 and
100 ppm AgNDPs treated fish, tiny pin-head sized to
patchy black brown foci scattered in the gill (Fig 2a)
and gastrointestinal tracts throughout the experiment.
At days 2-4 post-exposure, the gills from the 10 and 100
ppm AgNPs treated fish showed sloughing and pale in
color (Fig 2b). Some fish revealed congested and
enlarged spleen, and  multifocal  pin-point
haemorrhages in the liver. The degree of lesions
described above in the 100 ppm treated group was
more severe than the 10 ppm treated group.
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Microscopic findings: Trunk of the kidney from the
control fish showed mnormal appearance with
occasional mild congestion. However, the treated fish
revealed mild to moderate tubular degeneration and
hyaline droplets (Fig 3a). The most severe lesions were
observed in the 100 ppm AgNPs exposure group
followed by the 10 and 1 ppm groups, respectively, at
day 0 post-exposure. The severity of the lesions
increased from day 1 until the end of experiment.
Increase in the numbers of MMCs in head of kidney
and spleen was obviously observed in the
experimental groups of 10 and 100 ppm compared to
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At day 0 post-exposure, accumulation of free

aggregated brown-black AgNPs was found on the gill
lamellae and lumen of all treated groups especially the
10 and 100 ppm groups. Mild to moderate sloughing of
gill epithelium (Fig 3e) and eosinophil infiltration in
gill lamellae (Fig 3f) were also found in the 10 and 100
ppm groups. At days 1-4, shortening and attachment
of gill lamellae were noted in the 10 and 100 ppm
groups with the accumulation of AgNPs (Fig. 3g). In
gastrointestinal organs of the treatment groups,
AgNPs accumulation was observed on the mucosal
surface and in the lumen throughout the experiment.
Moreover, brown-black dots or clumps of AgNPs were
also seen in the cytoplasm of melano-macrophages,
hepatocytes and gastric epithelial cells.
Cu/Zn Superoxide dismutase (Cu/Zn SOD) expression:
The expression of Cu/Zn SOD was not observed in any
sample tissues of the control fish (Figs 4a, 4c). In the 10
and 100 ppm treated fish, SOD expression was
observed chiefly in the cytoplasm of gill epithelium,
mucous cells, iodocytes and renal tubular cells from
days 1-4 post-exposure (Fig 4b, 4d).
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the control group (Fig 3b). Moderate lesions were
observed from day 1 until the end of the experiment.
Loss of fat storage hepatocytes was observed in various
degrees of the exposure groups. In the 100 ppm AgNPs
exposure group, the degree of fat losing hepatocytes
was moderate from day 1 until the end of experiment
when compared to the control group (Figs 3¢, 3d). Mild
to moderate loss of fat storage was noted in the 10 ppm
group. However, there was no difference in the
severity of lesions among the 1 ppm and control
groups.

m control
H1ppm
=10 ppm
m 100 ppm

Figure1l  Effects of AgNPs in terms of %
mortality at 24 hr. A significant
increase in mortality was
observed in 100 ppm AgNPs

treated tilapia

Fish from 100 ppm
AgNPs treated group
at 1 day post-exposure
showed patchy black
brown foci scattered in
gill (a; Bold arrow)
with sloughing and
pale of gill (b;
arrowhead).

Figure 2

Metallothionein

expression: Moderate
intracytoplasmic MT protein expression in the
cytoplasm of renal tubular epithelium was observed in
the 10 and 100 ppm exposure groups from day 1 until
the end of the experiment (Fig 5b). In the control and
other exposure groups, MT protein was not detectable
in any tissue samples (Fig 5a).

Autometallography: AgNPs deposition, yellow-brown
to black positive silver grains, were found aggregating
on lamellae and in lumen of the gill (Fig 6a), and
gastrointestinal mucosa and lumen (Fig 6b) of the
tilapias in the 10 and 100 ppm treated groups. The
positive silver grains were also observed occasionally
in the cytoplasm of the renal tubular epithelium of the
kidneys, hepatocytes, MMCs of the spleen and
intestinal epithelium of the experimental groups.
Degrees and distribution of positive staining increased
depending on the exposure concentration of AgNPs.
By contrast, no evidence of positive silver grains was
found in any tissues of fish of the control group.
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Discussion

In the present study, mean mortality rate in
the 100 ppm (pg/1) AgNPs exposure group was 97.2%
after the first day of experiment. The calculated 24-
of AgNPs

hour median lethal concentration (LC

T T e

50-24h)

Various organs from various doses of AgNPs treated and control groups
at various time points demonstrated a variety of histopathological
changes, H&E stain. (a) Tubular degeneration and hyaline droplets in the
trunk of the kidney (arrows); 10 ppm treated group at 0 day post-exposure,
Bar = 350 pm. (b) Increased MMCs in spleen (arrows); 1 ppm treated group
at 1 day post-exposure, Bar = 250 pm. (c) Loss of fat storage in hepatocytes
of 100 ppm treated group at 0 day post-exposure (Bar = 450 pm) compared
to the control group (d), Bar = 350 pm. (e) Sloughing of gill epithelium
(arrow) with AgNPs accumulation (bold arrow); 100 ppm treated group at
0 day post-exposure, Bar = 350 pm. (f) Eosinophil infiltration in gill
lamellae (arrows); 100 ppm treated group at 0 day post-exposure, Bar =500
pm. (g) Shortening and attachment of gill lamellae (bold arrow) with
accumulation of AgNPs (arrow); 100 ppm treated group at 2 days post-
exposure, Bar = 500 um.

Intense positive labeling of SOD (arrows) is expressed in cytoplasm of
various cells in gill (b; Bar = 350 pm) when compared to the control fish (a;
Bar = 600 pm) and renal tubular epithelium (d) when compared to the
control fish (c), Bar = 450 pm.

in this experiment was estimated at 53 ppm.

Comparing the LC_  —of this study with previous

studies developed on commercial AgNPs toxicity in
another fish, the value in the present study was rather
higher than others (Shahbazzadeh, et al.,, 2009). The
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higher values estimated in this study may be attributed
to some differences in standard techniques involving
type of the test-organisms and chemical. The fish used
in this study were adult tilapias. In contrast, other
studies that obtained lower values of LC, used

Rainbow Trout (Oncorhynchus mykiss) as the test-
organisms. Several toxicity studies reported that tilapia
is more tolerant than most commonly test- organisms
to many substances and chemicals (Bradbury and
Coats, 1989; Sarikaya, 2009).

Several studies reported the distribution of
nanoparticles in various organs of aquatic organisms.
Kashiwada (2006) used water-suspended fluorescent
nanoparticles to investigate the distribution of
nanoparticles in medaka. Nanoparticles were detected
at high levels in the gills and intestine, moderate levels
in testis and liver, and low levels in the brain. In our
study, the distribution of AgNPs in the organs and
tissues  of  tilapia  were  studied  using

Nanoparticles have been reported to cause
oxidative stress as a result of generation of reactive
oxygen species (ROS) in a number of in vivo and in vitro
studies (Dick et al., 2003; Donaldson and Stone, 2003;
Kaewamatawong et al., 2006). An in vivo study of
nanosilver also revealed the cytotoxicity of particles
that are related to the generation of reactive oxygen
species (Choi et al., 2010; Miura and Shinohara, 2009).
In an aquatic toxicity study, Federici and colleagues
(2007) demonstrated that the nanotoxicity of TiO in
rainbow trout was related to oxidative stress formation
and anti-oxidant protective induction such as
glutathione. In our study, we found the results of the
positive Cu/Zn SOD immunoreactivity mainly in the
cytoplasm of various cells in the gill tissues associated
with the AgNPs aggregation. These results indicated
that AgNPs might play an important role in producing
oxidant stress related to the particle accumulation.

Several laboratory and field studies noted
that metallothionein (MT) played an important role in
heavy metal homeostasis and detoxification in
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autometallographic technique. Gills and
gastrointestinal organs were the critical organs for high
accumulation of AgNPs. Low levels of positive AMG
staining were observed in the trunk of kidney, spleen
and hepatopancreas. These results suggest that AgNPs
can distribute throughout the systemic system of
aquatic organism. The major translocation pathway to
enter the circulation of nanoparticles in fish may
contribute via the gill-blood route and/ or the intestine-
blood route because gill and gastrointestinal organs are
principal routes that are directly exposed to and uptake
the toxicants from ambient water into the fish body. In
the present study, there was no evidence of the
distribution of AgNPs to the brain of the treated
tilapias. =~ However, several toxicity studies
demonstrated the distribution of nanoparticles to the
brain in other experimental fish such as medaka and
largemouth bass via the blood-brain barrier or
olfactory neuron (Kashiwada, 2006; Oberdorster et al.,
2004).

Figure5 Immunohistochemical
localization of MT in renal
tubular epithelium of 100 ppm
group at 3 days post-exposure,
brown positive staining was
observed in cytoplasm of
tubular epithelium (a, arrows)
compared to the control group
(b), Bar = 600 pm.

Figure6  Black positive silver grains
(arrows) in gill (a) and
intestine (b) of 100 ppm group
at 1 day post-exposure were
observed on mucosa and in
lumen, Bar = 300 pm

animals. An in vitro cytotoxicity study of astrocytes
exposure to Ag-NPs showed upregulation of MT via
activation of metal regulatory transcription factor 1
(MTF-1) (Luther et al., 2012). Certain mechanisms
associated with the MT responses to AgNPs exposure
remains unclear. Silver (Ag) can directly stimulate the
production of MT via initiation of thionien in the cells
(Kim et al., 2009). In another mechanism, enhancement
of MT induction is associated with their antioxidant
role that responses to an increase in oxyradicals (Haq
et al, 2003). In the present study, MT immuno-
expression was detected in the cytoplasm of renal
tubular epithelium that was associated with some
AgNPs aggregated areas. This study, therefore,
suggests that MT might have a protective role to
AgNPs in fish at acute stage. The underlying
mechanism of the induction of MT caused by exposure
to AgNPs should be elucidated.

In conclusion, AgNPs used in our study can
cause acute toxicity to adult tilapia in a concentration
and exposure time-dependent manner. The systemic
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distribution of AgNPs was discovered. Oxidative
stress may involve in the pathogenesis of the acute
AgNPs exposure. Moreover, the expression of MT in
tissues responded to AgNPs accumulation. The
AgNPs used in this study were in colloidal form that
could easy disperse and flow into aquatic
environments, leading to possible adverse affects to
aquatic organisms. Therefore, the release of untreated
AgNPs waste into the environment should be given
special attention to control and restrict for clean
environment and good quality of life.
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