

***In vitro* Modulatory Effects of Quercetin on Bovine Neutrophil Effector Functions**

Phongsakorn Chuammitri* Chiradet Amphaiphan Panupong Nojit

Abstract

Bovine neutrophils perform numerous effector functions to overcome microbial invasions by utilizing innately-equipped intracellular and extracellular killing mechanisms. In this study, we explored the modulatory effects of quercetin hydrate (QH), an herbal flavonoid compound, on bovine neutrophil functional activities. Isolated neutrophils were incubated with various concentrations of QH (0-100 μ M). Neutrophil viability results showed no signs of cytotoxicity ($p = 0.33$). In other assays, neutrophils were stimulated with a pre-defined concentration of QH (50 μ M). Results showed promising effects of QH on enhancing intracellular ROS generation ($p < 0.0001$) compared to control. Phagocytic activity of fluorescently labeled *E.coli* was also augmented by the effects of this compound ($p = 0.05$). However, intracellular killing of live *E.coli* quantified by MTT assay demonstrated a slight decrease in activity ($p = 0.304$). Additionally, extracellular killing driven by NET-DNA release was remarkably higher in QH-stimulated cells ($p = 0.0004$). Supplementation of QH to LPS stimulated neutrophils resulted in significantly decreased pro-inflammatory cytokines, IL-1 β ($p < 0.0001$) and TNF- α gene expression ($p = 0.004$). Taken together, quercetin could exert its noteworthy actions, both at cellular and molecular levels, at a certain physiological concentration.

Keywords: bovine, effector functions, neutrophil, quercetin

Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand

**Correspondence:* phongsakorn.c@cmu.ac.th

Introduction

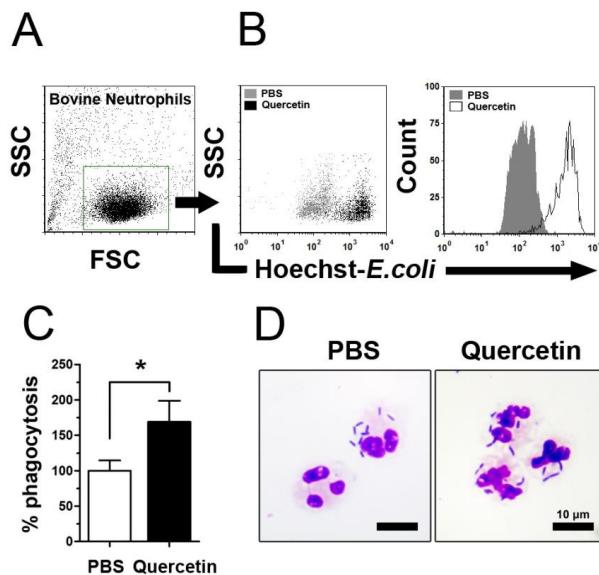
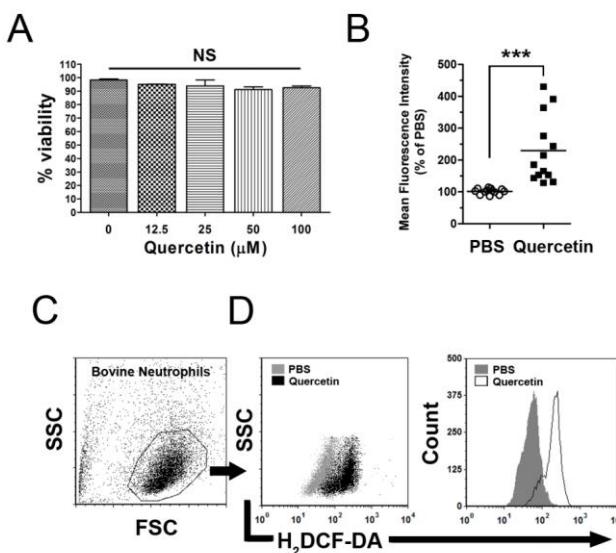
Neutrophils are privileged members of innate immune cells. As the first line, non-specific immune response, neutrophils are utmost important cells whose activities are to act against invading microorganisms. These cells sense and signal the presence of microbes which will increase the likelihood of infection by using various pathogen recognition receptors (PRRs) that are readily equipped on the cell surface or even in cytoplasmic parts (Hayashi et al., 2003; Mantovani et al., 2011). When a pathogen has been detected, neutrophils have strategies to properly manage those non-self intruders by performing a variety of processes, including phagocytosis, respiratory burst (reactive oxygen species, ROS), and degranulation, which are considered an intracellular killing mechanism (Bedard and Krause, 2007; Lambeth, 2004; Mantovani et al., 2011). In addition to internal effector function, neutrophils release web-like extracellular DNA, histones, and granule proteins to capture and to restrain bacteria, fungi, protozoa, and viruses in a process called "neutrophil extracellular traps (NETs)" (Brinkmann et al., 2004; Grinberg et al., 2008; Lippolis et al., 2006). For more details in neutrophil biology and function, please refer to a collection of review articles, previously published elsewhere (Mantovani et al., 2011; Nathan, 2006; Segal, 2005; Witko-Sarsat et al., 2000).

The generation of ROS provokes many subsequent activities governing in neutrophils. To address some, phagocytosis along with the degranulation of acidic content worked in concert with ROS molecules, specifically H_2O_2 , in phagolysosome (Segal, 2005). Another example is about the process in NET formations that required stimulation of NADPH oxidase (NOX) protein subunits to drive the release of those structures (Ermert et al., 2009). The unexpected creation of oxidative radicals, granule exocytosis, and NETs released by neutrophils in order to combat microbes were unintentionally detrimental to a surrounding host tissue (Diplock et al., 1998; Mantovani et al., 2011). Subtly, ROS may act like a switch to turn on pro-inflammatory genes through some transcription factors as reviewed by Boots (Boots et al., 2008).

Application of dietary antioxidants from natural plants such as quercetin has recently gained more popularity. Quercetin is naturally available phenolic compounds ubiquitously present in many fruits, vegetables, herbs, nuts, seeds, stems, flowers, and plant-derived beverages such as tea and wine (Formica and Regelson, 1995; Wadsworth and Koop, 1999). *In vitro* and *in vivo* studies revealed that quercetin exerted its effects on antiviral activity, anticancer activity, anti-inflammation, anti-oxidant, antimicrobial activity, cardiovascular protective effects, and vice versa (Alzoreky and Nakahara, 2003; Arima et al., 2002; Formica and Regelson, 1995). The modulatory activities of quercetin and its derivatives may depend on the transformation of original structures and solubility (Loke et al., 2008; Moreira et al., 2007). When studied at a molecular level, quercetin greatly reduced gene expression, especially targeted genes that were involved in early immune responses or

pro-inflammatory cytokines, including IL-1 β , IL-6, TNF- α , MIP-1 α , MIP-2, IL-8, IL-6, iNOS, which is vital to host defense mechanism (Cho et al., 2003; Das et al., 2012; Geraets et al., 2009; Kwon et al., 2005; Liu et al., 2005).

Based on current data of quercetin in neutrophils, macrophages, and other cell types, the knowledge of quercetin pertaining to bovine neutrophils is inadequately established. This prompted us to question how this substance would exert its immunomodulatory effects in bovine neutrophils. The aim of the present study was to explore the effects of quercetin on both intracellular and extracellular functions of bovine neutrophils. Moreover, we investigated the anti-inflammatory effect of this substance in controlling gene expressions in neutrophils, specifically pro-inflammatory cytokines, under quercetin supplementation conditions.



Materials and Methods

Reagents: Citrate-dextrose solution (ACD), Hank's balanced salts (HBSS) without calcium, magnesium, and phenol red, Quercetin hydrate, Lipopolysaccharides from *Escherichia coli* O111:B4, Thiazolyl Blue Tetrazolium Bromide (MTT), Poly-L-lysine solution, Trypan Blue solution, and Ethidium bromide were purchased from Sigma-Aldrich, St. Louis, MO, USA. Fetal Bovine Serum (FBS), RPMI-1640, Hoechst 33342 solution, H₂DCFDA, and ProLong Gold with DAPI were obtained from Life Technologies, Carlsbad, CA, USA.

Animals and isolation of bovine neutrophils: Healthy, non-pregnant adult Holstein cows were used as blood donors. A total number of 15 cows in 3 independent experiments, 5 cows each, were recruited in the study. All cows were housed at Mae Hia Agricultural Research, Demonstration and Training Center, Chiang Mai University. The experimental protocol was reviewed and approved by the Faculty of Veterinary Medicine Animal Care and Use Committee, Chiang Mai University, Thailand. Forty (40) mL of whole blood was collected by jugular venipuncture into a sterile syringe containing 10 mL of 1x ACD solution for immediate neutrophils isolation. Neutrophil isolation protocol was previously described by Roth and Kaeberle (1981) with modifications. In short, blood was centrifuged at 1,000 xg for 20 min (Allegra X-15R Centrifuge, Beckman Coulter, Brea, CA, USA) to collect only packed RBCs. The remaining RBCs were lysed by flash hypotonic solution followed by a hypertonic phosphate buffered saline (PBS) solution in order to return its isotonicity. The sample was centrifuged at 600 xg for 10 min. Cell pellet was washed twice with HBSS and resuspended in cold RPMI-1640 medium supplemented with 1% heat inactivated FBS. Cell purity was greater than 90 % as visualized by DipQuick-stained cytopsin preparation (RVL Supply, Bangkok, Thailand) and cell viability was > 95 % as

determined by trypan blue exclusion. Finally, cell density was adjusted to approximately one million (1×10^6) cells per mL.

Quercetin: Quercetin hydrate (QH) with purity of $\geq 95\%$ by HPLC and containing $\geq 2.9\%$ of water as determined by Karl Fischer was used. Stock solution (5 mM) was prepared by dissolving dry quercetin powder in 95% ethanol and filter sterile. Working solution at 50 μM concentration made from stock solution was wrapped with foil to protect from light. All solutions were freshly prepared on the day of experiment and stored at room temperature until use.

In vitro cytotoxicity assay of quercetin on bovine neutrophils: Cytotoxicity of bovine neutrophils was determined as published protocol (Das et al., 2012) with modifications. In brief, 1×10^5 neutrophils were seeded into a 96-well flat bottom plate in duplicate. Quercetin treatments were infused at final concentrations of 0, 12.5, 25, 50, and 100 μM . The cell

culture plate was incubated at 37°C with 5% CO₂ for 60 min. Cell viability determination was conducted by reduction of MTT to formazan (2 $\mu\text{g}/\text{mL}$ in HBSS). Optical density (OD) of colored formazan was measured at OD₅₇₀ using an automated microplate reader (Anthos Labtec Instruments, Wals, Austria).

culture plate was incubated at 37°C with 5% CO₂ for 60 min. Cell viability determination was conducted by reduction of MTT to formazan (2 $\mu\text{g}/\text{mL}$ in HBSS). Optical density (OD) of colored formazan was measured at OD₅₇₀ using an automated microplate reader (Anthos Labtec Instruments, Wals, Austria).

Reactive Oxygen Species (ROS) assay: Neutrophils (1×10^5 cells) were seeded into a 96-well flat plate in duplicate. The cells were stimulated with 50 μM quercetin (optimal concentration from preliminary studies) or PBS, served as control, for 30 min in an incubator set at 37°C with 5% CO₂. The plate was centrifuged at 1,200 rpm for 3 min (LMC-3000, BioSan, Riga, Latvia) then supernatant was discarded. The cells were activated to produce ROS with 100 nM phorbol myristate acetate (PMA, Millipore, Billerica, MA, USA) for 15 min in the dark. Subsequently, H₂DCFDA (20 $\mu\text{M}/\text{mL}$ final conc.) were added (He et al., 2003), and incubated for 15 min at 37°C, 5% CO₂. The plate was centrifuged (1,200 rpm, 5 min) and washed with iced-cold PBS. Sample acquisitions (10,000 events) were performed by CyAn ADP High-Performance Flow Cytometer (Beckman Coulter). Data were analyzed by using the FCS Express 4 software package (De Novo Software, Los Angeles, CA, USA). The region of background fluorescence was set at 10 units for cut-off value. The ROS generation was reported as mean fluorescence intensity (MFI).

Phagocytosis: Phagocytic activity of Hoechst labeled *E.coli* was assessed via flow cytometry (Yan et al., 2012). In brief, neutrophil suspension (1×10^5 cells) was incubated, in duplicate wells, with 50 μM quercetin or PBS for 30 min at 37°C, 5% CO₂. Fluorescent *E.coli* (1×10^6 bacteria from no.3) was opsonized with 10% heat-inactivated normal bovine serum for 20 min at 37°C. Opsonized bacteria (MOI of 10) were then added to the cells, centrifuged (1,200 rpm, 5 min), and incubated (37°C, 5% CO₂) for 60 min. After incubation, the plates were washed twice with cold PBS and centrifuged at 1,200 rpm for 5 min. Cell pellet was resuspended in 1% PFA and samples were submitted to flow cytometry. Data acquisition and analysis were performed as stated in the ROS assay.

Bacterial killing assay: Bovine neutrophil bacterial killing was evaluated using a formazan metabolic conversion in the MTT colorimetric assay as previously described with modifications (Chuammitri et al., 2011; Das et al., 2012). *Escherichia coli* were freshly prepared for each assay by colony picking method and propagation in LB broth until OD₆₀₀ of 0.5 or greater was reached. Live bacteria were opsonized and diluted to a final concentration (1×10^6 CFU/mL) to be used in the assay. Neutrophils (1×10^5 cells) were loaded into duplicate wells of a 96-well plate, subsequently added 50 μM quercetin or PBS, and incubated (37°C, 5% CO₂) for 30 min. Opsonized *E. coli* were seeded with stimulated neutrophils in 1:10 ratio. The plate was centrifuged and placed in an incubator for 45 min. After incubation, the plate was again centrifuged to remove non-ingested bacteria. Hypotonic solution (diH₂O) was used for releasing internalized bacteria from lysed neutrophils. After lysing, LB broth was supplemented to all wells. Incubation took place for a total of 90 min at 37°C. The plate was taken out and 2 $\mu\text{g}/\text{mL}$ MTT was added in LB broth (working solution) to develop colored formasan for 15-30 min. The plate was centrifuged and the supernatant was transferred to a new plate. Absorbance (OD₅₇₀) was measured after adding dimethyl sulfoxide (DMSO) to dissolve the

purple formazan crystals using an automated microplate reader. In each experiment, OD from control well (MTT solution only) was included to indicate no live bacteria were present. The MTT assay was also validated by counting colony forming units. Percentage of killing was calculated by substituting measured OD values into the following formula:

$$\% \text{ of killing} = 100 - [(OD_{\text{sample}} - OD_{\text{MTT}}) \times 100]$$

Cytospin slides were prepared from an aliquot of neutrophils before lysis process. For details, 0.001% poly-L-lysine coated circular coverslips (15 mm diameter) were placed into a 24-well plate. Cells were seeded and subsequently centrifuged at 1,200 rpm for 5 min. Slides were fixed with absolute ethanol, stained with DipQuick, and examined with a Zeiss Axio Scope A1 (Carl Zeiss, Thornwood, NY, USA).

Bovine neutrophil extracellular trap (NET) formation: Circular 0.001% poly-L-lysine coated coverslips (15 mm diameter) were placed into 24-well tissue culture plates (Grinberg et al., 2008). Neutrophils (2.5×10^4 cells in RPMI-1640) were seeded on coverslips, followed by stimulating with 50 μM quercetin or PBS for 30 min in a 37°C, 5% CO₂ incubator. For NETs release, solutions from previous process were aspirated and the cells were subsequently stimulated with PMA (100 nM) (Remijesen et al., 2010) or PBS for 90 min to allow NET formation (optimal concentration and incubation time were determined in preliminary experiments). The plates were centrifuged (1,200 rpm, 5 min), supernatant was removed, and cells were fixed with 4% PFA for 25 min at room temperature. After washing with cold PBS, NET structures were fluorescently stained and mounted with ProLong Gold with DAPI for 10 min in the dark. NET releases were captured by using 10x objective equipped with a Zeiss Axio Scope A1 fluorescence microscope with the Axio Vision Image System. DNA-staining NETs were manually counted from 5 random fields at 10x objective by three observers in a blinded technique (Yan et al., 2012).

Semi-quantitative reverse transcription PCR (RT-PCR): Semi-quantitative reverse transcription PCR (RT-PCR) was performed to investigate the effect of quercetin on pro-inflammatory cytokine gene expressions in bovine neutrophils. One million neutrophils (1×10^6 cells in RPMI-1640) were treated with 100 ng/mL *Escherichia coli* LPS 0111:B4 (Liu et al., 2005) coupled with 50 μM quercetin or PBS in a 24-well culture plate (duplicate wells) for 60 min at 37°C with 5% CO₂ incubator. After stimulation, total RNA was extracted and purified by NucleoSpin RNA II (MACHEREY-NAGEL, Bethlehem, PA, USA) according to the manufacturer's recommendations. The RNA concentration was quantified using a DU 730 nanoVette UV/Vis spectrophotometer (Beckman Coulter) at 260 nm. Complementary DNA (cDNA) was reverse-transcribed from a starting amount of 2 μg of total RNA by Tetro cDNA Synthesis Kit (Bioline, Taunton, MA, USA). Briefly, 20 μL reaction mixture contained 4 μL 5x RT Buffer, 1 μL 10mM dNTP mix (2.5 mM each), 1 μL Oligo(dT)₁₈ (10 $\mu\text{M}/\mu\text{L}$), 4 μL Random Hexamer (10 $\mu\text{M}/\mu\text{L}$), 1 μL RNase Inhibitor (10 U/ μL),

1 μ L Tetro Reverse Transcriptase (200U/ μ L), 2 μ g Total RNA, and DEPC-treated H₂O. The cDNA synthesis was carried out by G-STORM GS1 thermocycler (Somerton Biotechnology, Somerset, UK) by incubating the samples at 25°C for 10 min, 45°C for 30 min, followed by heating at 85°C for 5 min, chilled on ice, and stored reaction at -20°C until further use.

Primer sequences of bovine IL-1 β and TNF- α were described previously (Tao et al., 2004). The primer pair of GAPDH was designed using Primer3Plus (<http://primer3plus.com/cgi-bin/dev/primer3plus.cgi>). The sequences of oligonucleotide tides used in this study were as follows: GAPDH (NM_00103403), forward, 5'-AGTTCAA CGGCACAGTCAG-3', reverse, 5'-TCACGC CCATCACAAACATG-3'; IL-1 β (M35589), forward, 5'-CGTACCTGAACCCAT CAACGAAAT-3', reverse, 5'-GGCGTATCACCTTTTCACACAA-3'; TNF- α (Z14137), forward, 5'-TCTCAAGCCTCAAGT AACAAAGCCG-3', reverse, 5'-CAGGTAGTCCGGCAG GTTG AT CTC-3'. PCR primers were synthesized by Macrogen, Seoul, Korea.

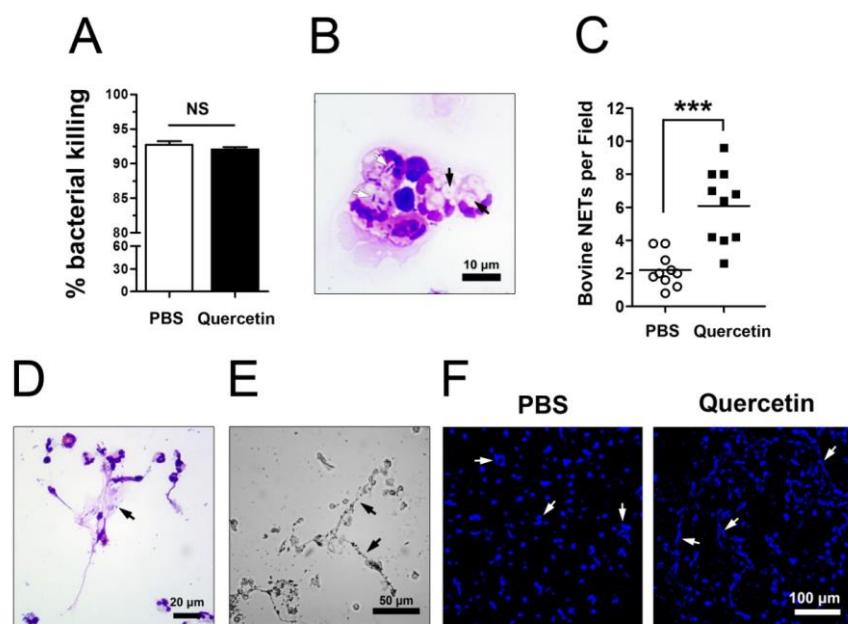
PCR condition was set up in a reaction volume of 25 μ L. The reaction mixture contained 12.5 μ L 2x MyTaq HS Red Mix (Bioline), 1 μ L forward and reverse primers (10 μ M), 100 ng cDNA template, and molecular biology grade H₂O. The cycling conditions for IL-1 β and GAPDH were set as follows: an initial denaturation of 95°C for 1 min, followed by 35 cycles of denaturation at 95°C for 15 sec, annealing at 59°C for 15 sec, extension at 72°C for 15 sec, and a final extension at 72°C for 2 min. The annealing temperature for TNF- α set at 57°C for 15 sec and the rest of the conditions were identical to other genes. The amplified PCR products were electrophoresed in 1.5% agarose gel at 100V for 30 min (Mini-Run Gel GE100, Hangzhou Bioer Technology, Hangzhou, China). The gels were stained with ethidium bromide (0.5 μ g/mL), documented using the Gel Doc 2000 system (Bio-Rad, Hercules, CA, USA). Amplicon sizes at 243, 564, and 414 bp were considered specific products of GAPDH, IL-1 β , and TNF- α , respectively. Gel band intensities were quantified by Gel Analyzer Options in ImageJ version 1.46r (<http://rsb.info.nih.gov/ij/index.html>) (Das et al., 2012). Expression levels are represented relative to GAPDH expression.

Data analysis: Results obtained from 3 independent experiments were tested for differences between treatments. Prior to statistical analyses, outliers were removed from the data set using the Grubbs' test or extreme outlier studentized deviate (ESD) method. Most analyses were done with GraphPad Prism version 5 (GraphPad software, San Diego, CA, USA) using either the unpaired two-tailed Student *t* test or Mann-Whitney test. Cytotoxicity data were analyzed using one-way ANOVA. Results are considered significant when *p*-value was \leq 0.05. Information obtained from the statistical analyses are represented as graphs generated by GraphPad.

Results

Cytotoxicity test of Quercetin on bovine neutrophils: The *in vitro* cytotoxicity of quercetin on bovine neutrophils, as determined by the MTT cytotoxicity assay, showed no cytotoxicity (Fig 1A, *p* = 0.33). Since the conversion of formasan from MTT was almost identical in every concentration tested (0, 12.5, 25, 50, and 100 μ M), this could be interpreted that the cells were not affected by quercetin. We also confirmed the cytotoxicity results from MTT assay with trypan blue exclusion under light microscope. The percentages of cell viability from trypan blue were consistent with MTT assay (data not shown). The percentages of cell viability from both assays indicated no cytotoxicity at any tested concentrations, thus we primarily chose only one concentration (50 μ M) to be applied to the other cellular function assays. Considering 50 μ M quercetin as an optimal concentration under the condition we used, we critically compared our results with published works of the quercetin effects on either neutrophils or PBMCs (Liu et al., 2005; Nair et al., 2006).

Reactive Oxygen Species (ROS) generation: To assess the effects of quercetin on the production of intracellular reactive oxygen species (ROS), specifically H₂O₂, in bovine neutrophils, we stained the cells with fluorescent dye (H₂DCF-DA). Flow cytometry data showed that the cells treated with 50 μ M quercetin markedly increased the amount of ROS (MFI = 229.80 \pm 29.08) compared with the PBS treated cells (MFI = 101.90 \pm 2.41; *p* < 0.0001, Fig 1B-D).


Phagocytosis assay: We next investigated the phagocytic property of bovine neutrophils to phagocytose fluorescently labeled *E. coli* after stimulating with quercetin or PBS. Results verified that the increase in phagocytosis of neutrophils after being induced by quercetin was found (Fig 2). The exposure of quercetin resulted in enhancing phagocytosis in stimulated neutrophils (169.00 \pm 29.66 %) versus PBS control (100.00 \pm 14.56 %; *p* = 0.05, Fig 2C).

Bactericidal assay: The killing of live bacteria in bovine neutrophils is a complex process requiring the generation of ROS, degranulation, cytoskeletal rearrangement, and phagosome-lysosome fusion. In our assay setting, we examined the neutrophil bactericidal ability by the MTT assay. Results demonstrated that the control cells (PBS) had the ability to destroy 92.73 \pm 0.50 % of the *E. coli* they harbored in phagosomes (Fig 3A-B). Like the control neutrophils, the quercetin-stimulated cells were able to equally kill phagosome-bearing *E. coli* (92.06 \pm 0.35%; *p* = 0.30, Fig 3A-B). The dead/live bacteria inside the bovine neutrophils were further visualized by cytospin preparation slides after DipQuick staining. Some bacteria inside phagosomes underwent cell lysis (Fig 3B), whereas the live ones were apparently encircled in the confinements. Moreover, some neutrophils casted neutrophil extracellular traps (NETs) with different length to destroy bacteria outside the cells, as depicted in Figure 3D.

Bovine Neutrophil Extracellular Traps (NETs) Formation: Neutrophil Extracellular Traps (NETs) in bovine neutrophils has been previously reported by Grinberg et al. (2008) and Lippolis et al. (2006). To elucidate the effects of quercetin on accommodating the release of NET structures in the current study, we pretreated the neutrophils with saline (PBS) or 50 μ M quercetin and restimulated cells with the known potent stimulant, PMA. As we expected, the neutrophils released NET structures in response to the PMA activation. The fluorescently labeled DNA as a major component of bovine NETs was evident under fluorescence microscope. The DNA stained structures were protruded and lengthened away from the quercetin-stimulated cells (Fig 3F). An average number of 6.08 ± 0.77 NETs/field was enumerated from the neutrophil incubated with quercetin, whereas the neutrophils receiving PBS had approximately three times less in the number of NETs (2.20 ± 0.32 NETs/field) as presented in Figure 3C ($p = 0.0004$).

Semi-quantitative Reverse Transcription PCR (RT-PCR): The fact that quercetin controlled certain molecular mechanisms in neutrophils have been proposed. Quercetin possessed the suppressive action

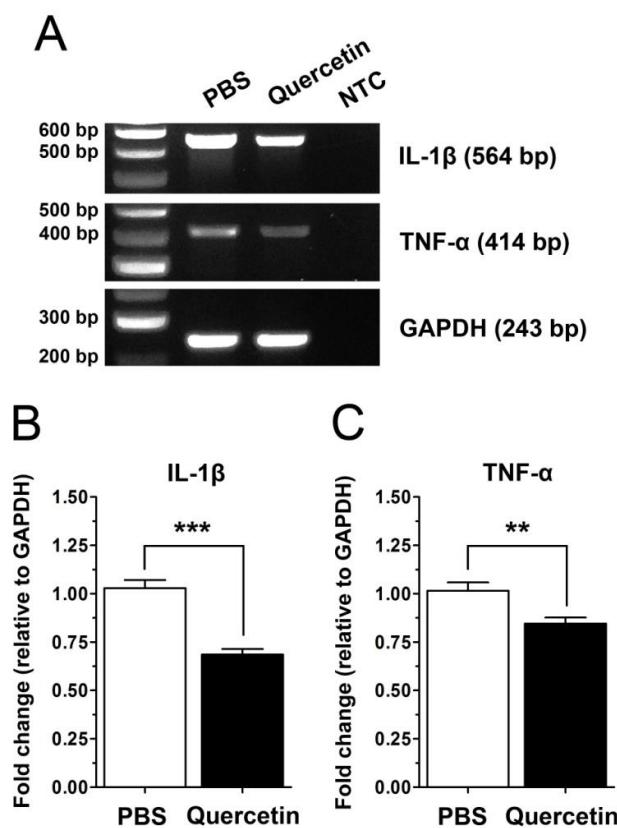
for pro-inflammatory cytokine gene expression, for example IL-1 β , IL-6, and TNF- α were firmly established (Cho et al., 2003; Liu et al., 2005). We examined whether the use of quercetin at 50 μ M, which were the earlier enhanced bovine neutrophil functions, could suppress pro-inflammatory cytokine genes. In this study, the neutrophils from quercetin-treated group subtly altered IL-1 β and TNF- α gene expressions. Semi-quantitative analysis of the band intensities of IL-1 β PCR products illustrated many differences between the control and quercetin-treated neutrophils (Fig 4A). The profound effect of quercetin implemented in alteration of IL-1 β fold changed relatively to the housekeeping gene (GAPDH). The untreated cells (PBS) had 1.00 ± 0.04 relative fold change compared with the quercetin group (0.69 ± 0.03 fold change; $p < 0.0001$, Fig 4B). A similar pattern was also depicted from the TNF- α PCR products, but with less extent than what was found in the IL-1 β gene expression. For TNF- α gene expression, the quercetin-treated group showed a decrease in fold change (0.85 ± 0.03) when compared to the PBS-treated group (1.00 ± 0.04 ; $p = 0.0044$, Fig 4C).

Figure 3 MTT bacterial killing and bovine NET formation

(A) Bar graphs show percentage of killing of live *E.coli* in neutrophils treated with PBS or 50 μ M quercetin. Data are mean \pm SEM of two independent experiments ($n = 5$ animals per experiment). NS = no significance by unpaired Students *t* test. (B) Representative image from cytospin slides prepared before MTT assay shows dead (black arrows)/live (white arrows) bacteria in quercetin-stimulated neutrophils. Scale bar = 10 μ m, 40x objective. (C-F) Bovine neutrophil extracellular traps (NETs) formation. (C) Bar graphs show quantity of NETs in control (PBS) or quercetin- stimulated cells. Each data point in the plot represents an individual animal ($n = 10$). Horizontal bars indicate median values of two independent experiments. *** $p < 0.001$ versus control by Mann-Whitney test. (D-F) Representative images of NET structures (arrows) as visualized by (D) DipQuick-stained, 20x (E) Bright field, 20x (F) Hoechst 33342-stained structures (5x), scale bars as indicated on each image.

Discussion

In the current study, our goals were to explore the response of the innate immune system, bovine neutrophils in particular, once they have been stimulated with quercetin hydrate. Our finding is the first to witness the initiation of extracellular NET


formation from quercetin-stimulated bovine neutrophils after encountering live bacteria or PMA *in vitro*.

The cytotoxicity test revealed that quercetin was safe to be utilized for bovine neutrophils. This result is consistent with previous reports in human-, rabbit neutrophils and macrophage cell line (Boesch-

Saadatmandi et al., 2011; Kaneider et al., 2004; Moreira et al., 2007; Tang et al., 2009). The importance of reactive oxygen species (ROS) in neutrophil biology has long been addressed. Quercetin acting as antioxidants or the scavenger of ROS in neutrophils was currently known to date (Loke et al., 2008). From our observation, the *in vitro* stimulation of bovine neutrophils with 50 μ M quercetin resulted in the elevation of the ROS level within the cells. The generation of ROS molecules is fully regulated by NADPH oxidase (NOX) enzyme (Lambeth, 2004). In resting, unstimulated neutrophils, NOX subunits (e.g. p22^{phox} and p47^{phox}) are inactive. A logical reason for our finding is that quercetin influenced, in part or in whole, the NOX subunits, which then become active. As a consequence, active NOX proteins interact with each other to form a viable NADPH oxidase and to be able to execute ROS production (Lambeth, 2004). Another possible explanation is that quercetin is involved in ROS signaling pathway by inducing through protein kinase C (PKC)/Akt pathway (Piccoli

et al., 2007). However, further investigations need to fulfill this specific information.

Phagocytosis and destruction of invading pathogens are some of the major effector functions equipped within mammalian neutrophils. This particular process of ingesting bacteria initiates when cell surface receptors, for example, Fc γ R, complement receptors (CR), scavenger receptor (SR), and Toll-like receptors (TLRs), are activated. Cells will recognize pathogens by specifying receptor, send a signal downstream, secrete some cytokines, and provoke the immune response toward phagocytosis. Upon activation by quercetin, bovine neutrophils were biologically active and efficiently phagocytose opsonized *E.coli*. The result here is in line with the experiment by Moreira et al. (2007) in which quercetin promoted phagocytosis in rabbit neutrophils. It was previously reported that increasing ROS, especially H₂O₂, will enhance FcR phagocytosis (Pricop et al., 1999).

Figure 4 Effects of quercetin on IL-1 β and TNF- α mRNA expressions in bovine neutrophils by RT-PCR

(A) Quercetin down regulated the expression of both IL-1 β and TNF- α genes as demonstrated by representative band intensities of PCR amplicons. GAPDH was used as an internal control. NTC = no template control. (B) Densitometric analysis of IL-1 β mRNA expression level compared to GAPDH. (C) TNF- α mRNA expression level compared to GAPDH. Data are expressed as mean \pm SEM of two independent experiments ($n = 5$ animals per experiment). ** $p < 0.01$, *** $p < 0.001$ versus PBS by unpaired Students t test.

It is apparent that bovine neutrophils utilize extraordinary structure (NETs) to entrap and to kill extracellular bacteria alongside with other effector functions (Grinberg et al., 2008). Hakkim et al. (2011) reported that the signaling pathway of NET formation involved the Raf-MEK-ERK pathway. As signals went downward, the mediators of oxidative radicals, specifically NADPH oxidase, increased and extended the creation of NETs (Brinkmann and Zychlinsky, 2007; Giambelluca and Gende, 2008; Hakkim et al., 2011; von Kockritz-Blickwede and Nizet, 2009). In our study, we did show the formation of bovine NETs after receiving quercetin treatment. Ermert et al. (2009) and

Röhm et al. (2014) suggested that ROS was required for NET production. Our results in ROS assay also showed the increase in ROS molecules in the quercetin-primed cells. Altogether, the increase in ROS level may somehow assist in more bovine NET formation.

It is well recognized that quercetin remarkably modulates inflammation at a molecular level (Cho et al., 2003; Liu et al., 2005; Nair et al., 2006; Tang et al., 2009). In this report, we observed the reduction in proinflammatory cytokine gene expressions, IL-1 β and TNF- α in bovine neutrophil by the action of quercetin after stimulated with LPS. The results were in agreement with reports elsewhere (Cho

et al., 2003; Tang et al., 2009). The macrophage cell line (RAW 264.7) treated with quercetin was found to have the decrease in IL-1 β and TNF- α mRNA expressions under a time-dependent manner. Quercetin also inhibited the expression of TNF- α in human PBMC with increasing doses (Nair et al., 2006). Furthermore, there was an evidence that quercetin abrogated IL-6 production in isolated human neutrophils (Liu et al., 2005).

It is, therefore, not surprising that quercetin is involved in the multi-process of stimulating the generation of ROS, thus sustaining other effector functions that follow. Quercetin helped to enhance phagocytosis, and moreover released NETs. From our point of view, ROS, phagocytosis, microbial killing and degranulation, and NETs act in concert to immediately combat the pathogen invasion. These functions can be nicely organized and induced by the effects of quercetin. Our current understanding regarding the effects of quercetin on bovine innate immune cells, neutrophils, could be concluded here. Under the conditions used, we have obtained a logical evidence that quercetin, at a physiological concentration (50 μ M) can manipulate major effector bovine neutrophil functions, namely respiratory burst, phagocytosis, and NETs. In order to fully exploit the benefits of quercetin, the understanding of exact molecular mechanisms behind the immunomodulatory effects of quercetin, is one of our future particular interests.

Acknowledgements

This work was financially supported in part by the Faculty of Veterinary Medicine, Chiang Mai University, Thailand (Grant no. R009071 to P.C.) and a grant from the Thailand Research Fund (TRF) grant no. MRG5580131 to P.C. We would like to thank the Medical Science Research Equipment Center, Chiang Mai University for flow cytometer.

References

Alzoreky NS and Nakahara K 2003. Antibacterial activity of extracts from some edible plants commonly consumed in Asia. *Intl J Food Microbiol.* 80(3): 223-230.

Arima H, Ashida H and Danno G 2002. Rutin-enhanced antibacterial activities of flavonoids against *Bacillus cereus* and *Salmonella enteritidis*. *Biosci Biotechnol Biochem.* 66(5): 1009-1014.

Bedard K and Krause K 2007. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. *Physiol Rev.* 87(1): 245-313.

Boesch-Saadatmandi C, Loboda A, Wagner AE, Stachurska A, Jozkowicz A, Dulak J, Döring F, Wolffram S and Rimbach G 2011. Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: role of miR-155. *J Nutr Biochem.* 22(3): 293-299.

Boots AW, Haenen GRMM and Bast A 2008. Health effects of quercetin: From antioxidant to nutraceutical. *Eur J Pharmacol.* 585(2-3): 325-337.

Brinkmann V and Zychlinsky A 2007. Beneficial suicide: why neutrophils die to make NETs. *Nat Rev Microbiol.* 5(8): 577-582.

Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y and Zychlinsky A 2004. Neutrophil extracellular traps kill bacteria. *Science* 303(5663): 1532-1535.

Cho SY, Park SJ, Kwon MJ, Jeong TS, Bok SH, Choi WY, Jeong, WI, Ryu SY, Do SH and Lee CS 2003. Quercetin suppresses proinflammatory cytokines production through MAP kinases and NF- κ B pathway in lipopolysaccharide-stimulated macrophage. *Mol Cell Biochem.* 243(1-2): 153-160.

Chuammitri P, Redmond SB, Kimura K, Andreasen CB, Lamont SJ and Palić D 2011. Heterophil functional responses to dietary immunomodulators vary in genetically distinct chicken lines. *Vet Immunol Immunopathol.* 142(3): 219-227.

Das T, Mukherjee S and Chaudhuri K 2012. Effect of quercetin on *Vibrio cholerae* induced nuclear factor- κ B activation and interleukin-8 expression in intestinal epithelial cells. *Microbes Infect.* 14(9): 690-695.

Diplock A, Charuleux JL, Crozier-Willi G, Kok F, Rice-Evans C, Roberfroid M, Stahl W and Vina-Ribes J 1998. Functional food science and defence against reactive oxidative species. *Br J Nutr.* 80(S1): S77-S112.

Ermert D, Urban CF, Laube B, Goosmann C, Zychlinsky A and Brinkmann V 2009. Mouse neutrophil extracellular traps in microbial infections. *J Innate Immun.* 1 (3): 181-193.

Formica JV and Regelson W 1995. Review of the biology of quercetin and related bioflavonoids. *Food Chem Toxicol.* 33(12): 1061-1080.

Geraets L, Haegens A, Brauers K, Haydock JA, Vernooy JH, Wouters EF, Bast A and Hageman GJ 2009. Inhibition of LPS-induced pulmonary inflammation by specific flavonoids. *Biochem Biophys Res Commun.* 382(3): 598-603.

Giambelluca MS and Gende OA 2008. Hydrogen peroxide activates calcium influx in human neutrophils. *Mol Cell Biochem.* 309(1-2): 151-156.

Grinberg N, Elazar S, Rosenshine I and Shpigel NY 2008. β -Hydroxybutyrate abrogates formation of bovine neutrophil extracellular traps and bactericidal activity against mammary pathogenic *Escherichia coli*. *Infect Immun.* 76(6): 2802-2807.

Hakkim A, Fuchs TA, Martinez NE, Hess S, Prinz H, Zychlinsky A and Waldmann H 2011. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. *Nat Chem Biol.* 7(2): 75-77.

Hayashi F, Means TK and Luster AD 2003. Toll-like receptors stimulate human neutrophil function. *Blood* 102(7): 2660-2669.

He H, Farnell MB and Kogut MH 2003. Inflammatory agonist stimulation and signal pathway of oxidative burst in neonatal chicken heterophils. *Comp Biochem Physiol A: Mol Integr Physiol.* 135(1): 177-184.

Kaneider NC, Mosheimer B, Reinisch N, Patsch JR and Wiedermann CJ 2004. Inhibition of thrombin-

induced signaling by resveratrol and quercetin: effects on adenosine nucleotide metabolism in endothelial cells and platelet-neutrophil interactions. *Thromb Res.* 114(3): 185-194.

Kwon KH, Murakami A, Tanaka T and Ohigashi H 2005. Dietary rutin, but not its aglycone quercetin, ameliorates dextran sulfate sodium-induced experimental colitis in mice: attenuation of pro-inflammatory gene expression. *Biochem Pharmacol.* 69 (3): 395-406.

Lambeth JD 2004. NOX enzymes and the biology of reactive oxygen. *Nat Rev Immunol.* 4(3): 181-189.

Lippolis JD, Reinhardt TA, Goff JP and Horst RL 2006. Neutrophil extracellular trap formation by bovine neutrophils is not inhibited by milk. *Vet Immunol Immunopathol.* 113(1): 248-255.

Liu J, Li X, Yue Y, Li J, He T and He Y 2005. The Inhibitory Effect of Quercetin on IL-6 production by LPS stimulated neutrophils. *Cell Mol Immunol.* 2(6): 455-460.

Loke WM, Proudfoot JM, Stewart S, McKinley AJ, Needs PW, Kroon PA, Hodgson JM and Croft KD 2008. Metabolic transformation has a profound effect on anti-inflammatory activity of flavonoids such as quercetin: lack of association between antioxidant and lipoxygenase inhibitory activity. *Biochem Pharmacol.* 75(5): 1045-1053.

Mantovani A, Cassatella MA, Costantini C and Jaillon S 2011. Neutrophils in the activation and regulation of innate and adaptive immunity. *Nat Rev Immunol.* 11(8): 519-531.

Moreira MR, Kanashiro A, Kabeya LM, Polizello ACM, Azzolini AE, Curti C, Oliveira CA, T-do Amaral A and Lucisano-Valim YM 2007. Neutrophil effector functions triggered by Fc-gamma and/or complement receptors are dependent on B-ring hydroxylation pattern and physicochemical properties of flavonols. *Life Sci.* 81(4): 317-326.

Nair MP, Mahajan S, Reynolds JL, Aalinkeel R, Nair H, Schwartz SA and Kandaswami C 2006. The flavonoid quercetin inhibits proinflammatory cytokine (tumor necrosis factor alpha) gene expression in normal peripheral blood mononuclear cells via modulation of the NF- κ B system. *Clin Vaccine Immunol.* 13(3): 319-328.

Nathan C 2006. Neutrophils and immunity: challenges and opportunities. *Nat Rev Immunol.* 6(3): 173-182.

Piccoli C, D'Aprile A, Ripoli M, Scrima R, Lecce L, Boffoli D, Tabilio A and Capitanio N 2007. Bone-marrow derived hematopoietic stem/progenitor cells express multiple isoforms of NADPH oxidase and produce constitutively reactive oxygen species. *Biochem Biophys Res Commun.* 353(4): 965-972.

Pricop L, Gokhale J, Redecha P, Ng SC and Salmon JE 1999. Reactive oxygen intermediates enhance Fc γ receptor signaling and amplify phagocytic capacity. *J Immunol.* 162(12): 7041-7048.

Remijsen Q, Berghe TV, Wirawan E, Asselbergh B, Parthoens E, De Rycke R, Noppen S, Delforge M, Willems J and Vandeneabeele P 2010. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. *Cell Res.* 21(2): 290-304.

Röhm M, Grimm MJ, D'Auria AC, Almyroudis NG, Segal BH and Urban CF 2014. NADPH oxidase promotes neutrophil extracellular trap formation in pulmonary aspergillosis. *Infect Immun.* 82(5): 1766-1777.

Roth JA and Kaeberle ML 1981. Isolation of neutrophils and eosinophils from the peripheral blood of cattle and comparison of their functional activities. *J Immunol Methods.* 45(2): 153-164.

Segal AW 2005. How neutrophils kill microbes. *Annu Rev Immunol.* 23: 197-223.

Tang D, Kang R, Xiao W, Zhang H, Lotze MT, Wang H and Xiao X 2009. Quercetin prevents LPS-induced high-mobility group box 1 release and proinflammatory function. *Am J Respir Cell Mol Biol.* 41(6): 651-660.

Tao W, Mallard B, Karrow N and Bridle B 2004. Construction and application of a bovine immune-endocrine cDNA microarray. *Vet Immunol Immunopathol.* 101(1-2): 1-17.

von Köckritz-Blickwede M and Nizet V 2009. Innate immunity turned inside-out: antimicrobial defense by phagocyte extracellular traps. *J Mol Med.* 87(8): 775-783.

Wadsworth TL and Koop DR 1999. Effects of the wine polyphenolics quercetin and resveratrol on pro-inflammatory cytokine expression in RAW 264.7 macrophages. *Biochem Pharmacol.* 57(8): 941-949.

Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P and Halbwachs-Mecarelli L 2000. Neutrophils: molecules, functions and pathophysiological aspects. *Lab Invest.* 80(5): 617-653.

Yan J, Meng X, Wancket LM, Lintner K, Nelin LD, Chen B, Francis KP, Smith CV, Rogers LK and Liu Y 2012. Glutathione reductase facilitates host defense by sustaining phagocytic oxidative burst and promoting the development of neutrophil extracellular traps. *J Immunol.* 188(5): 2316-2327.

บทคัดย่อ

ผลของสารเคมีต้านการทำหน้าที่ของเซลล์นิวโรฟิลของโคในหลอดทดลอง

พงศกร เชื่อมไมตรี* จิรเดช คำไพบพันธุ์ ภาณุพงษ์ โนจิตร

นิวโทรฟิลในโโคเป็นเซลล์ในระบบภูมิคุ้มกันที่มีมาแต่กำเนิดซึ่งมีหน้าที่ในการต่อต้านและทำลายเชื้อโรคที่บุกรุกเข้าสู่ร่างกายโดยอาศัยการทำงานทั้งแบบการทำลายภัยในเซลล์และภายนอกเซลล์ ในการศึกษานี้ ผู้วิจัยได้ศึกษาผลของสารเครอร์ชิตินไยเดรต (QH) ซึ่งเป็นสารพฤกษ์เคมีในกลุ่มฟลูโวนอยด์ที่ส่งผลต่อการทำงานหน้าที่ของเซลล์นิวโทรฟิลในโโค เซลล์นิวโทรฟิลที่แยกได้จากเลือดนำกระดูกตุ้นด้วยสาร QH ที่ความเข้มข้นตั้งแต่ 0 ถึง 100 ไมโครโมล (μM) เพื่อตรวจสอบความเป็นพิษที่มีต่อเซลล์ การทดลองไม่พบว่าเกิดความเป็นพิษในทุกความเข้มข้นที่ทดสอบ ($p = 0.33$) และเมื่อใช้สาร QH ที่ความเข้มข้น 50 μM มากระตุ้นเซลล์พบว่าความสามารถในการผลิต Reactive Oxygen Species (ROS) ภายในเซลล์เพิ่มขึ้น ($p < 0.0001$) เปรียบเทียบกับเซลล์ในกลุ่มควบคุม ความสามารถในการเก็บกินเชื้อโคไล (E.coli) ที่ย้อมสีฟลูอูอ่อนเรสเซนส์เพิ่มขึ้น ($p = 0.05$) แต่การทำลายเชื้อโคไลมีชีวิตภายในเซลล์ลดลงเล็กน้อย ($p = 0.304$) นอกจากนี้ยังพบว่าความสามารถในการผลิตโครงสร้าง Neutrophil Extracellular Trap (NET) มีปริมาณที่เพิ่มขึ้น ($p = 0.0004$) ในเซลล์กกลุ่มที่ถูกกระตุ้นด้วย QH เมื่อตรวจสอบการแสดงออกของยีนที่เกี่ยวข้องกับกระบวนการอักเสบในนิวโทรฟิลที่ได้รับการเสริมสาร QH ก่อนการกระตุ้นเซลล์ด้วย lipopolysaccharide (LPS) พบว่าระดับการแสดงออกของยีน IL-1 β ลดลง ($p < 0.0001$) และระดับการแสดงออกของยีน TNF- α ลดลงเช่นกัน ($p = 0.004$) โดยสรุป การกระตุ้นนิวโทรฟิลด้วยสารเครอร์ชิตินไยเดรตที่ความเข้มข้นที่เหมาะสมจะส่งผลต่อการทำงานทั้งในระดับเซลล์และระดับชีวโมเลกุลของเซลล์ชนิดต่างกัน

คำสำคัญ: โโค การทำหน้าที่ นิวโตรอฟิล เคอร์ซิติน

ภาควิชาชีวศาสตร์ทางสัตวแพทย์และสัตวแพทย์ลาร์กอรณ์สข คณะสัตวแพทยศาสตร์ มหาวิทยาลัยเชียงใหม่ อ.เมือง จ.เชียงใหม่ 50100

*ผู้รับผิดชอบบทความ E-mail: phongsakorn.c@cmu.ac.th