Protective Immunity of the Pore-Forming Domains of Actinobacillus pleuropneumoniae Apx Toxins in a Mouse Model

Kamonpun Chuekwon^{1,2} Chun-Yen Chu^{2,3} Li-Ting Cheng^{2,3*}

Abstract

The hemolytic/leukolytic toxins ApxI, II and III play a central role in the pathogenicity of *Actinobacillus pleuropneumoniae* and may serve as effective vaccine antigens. However, since these toxins are large in size, we aimed to determine whether only the pore-forming domain of the toxins may be sufficient for protective immunity. Mice were vaccinated with the pore-forming domains for immune response analysis and challenge test. Significant antibody response was observed for the ApxI and II vaccine groups. For cellular immune response, CD4⁺ and CD8⁺ T cell expansion was observed for ApxI. Pro-inflammatory cytokine (IL-1β, IL-6) and T_H2-type cytokine (IL-4, IL-10) gene expression was detected for the ApxI and II groups. Finally, in a challenge test with a *A. pleuropneumoniae* serotype 1 strain, the pore-forming domains of ApxI, II, III and three of pore-forming domains conferred 100%, 40%, 0% and 100% protection, respectively. The pore-forming domain of the Apx toxins shows promise as a vaccine antigen against *A. pleuropneumoniae*.

Keywords: Actinobacillus pleuropneumoniae, Apx toxin, vaccine, pore-forming domain

*Correspondence: chenglt@mail.npust.edu.tw (L.T. Cheng)

Received Aug 17, 2022 Accepted May 14, 2023

Accepted May 14, 2023

https://doi.org/10.14456/tjvm.2023.8

¹Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung, 91201 Taiwan

²Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung, 91201 Taiwan

³International Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan

Introduction

Actinobacillus pleuropneumoniae is a Gram-negative bacterium that infects the respiratory tract of pigs and causes hemorrhagic pneumonia, leading to significant economic loss (Yang et al., 2011). Among the many virulent factors of A. pleuropneumoniae (Chiers et al., 2010), the pore-forming RTX (repeats-in-toxin) exotoxins ApxI, ApxII and ApxIII are considered the most important for pathogenesis (Jansen et al., 1994; Jarma and Regassa, 2004; Jung et al., 2019; Sassu et al., 2018) and may serve as effective vaccine antigens (Loera-Muro et al., 2018). However, since the RTX toxins are large proteins (>100 kDa) (Frey, 2019), heterologous expression of recombinant toxins may result in low yield. Therefore, this study sought to determine if the pore-forming domains alone may provide protective immunity.

RTX toxins are typically encoded on a polycistronic operon, pCABD. Gene "A" codes for the structural toxin, "C" for the activating acyltransferase (Stanley et al., 1998) and "B" and "D" for membrane proteins that together form the type 1 secretion system (T1SS) (Frev et al., 1994; Yoo et al., 2020). After synthesis in the cytoplasm, the inactive pro-toxin A is activated through acylation and then exported across the cytoplasmic and outer membranes simultaneously through the T1SS. RTX toxins effect on their target cells are hemolytic and leukolytic. The presence of RTX toxins can be easily detected in vitro by the characteristic hemolytic halo around colonies grown on blood agar (Marsteller and Fenwick, 1999). However, it is now known that RTX toxins exert their pathogenic effect by targeting leukocytes of the innate immune system, i.e., macrophages and neutrophils (Chen et al., 2011). By binding to β_2 -integrins on leukocytes, RTX toxins induces apoptosis, cell death and tissue lesions that lead to disease (Atapattu and Czuprynski, 2007; Aulik et al., 2012; Frey, 2019; Hiyoshi et al., 2019; Lally et al., 1999; Los et al., 2013). Different Apx toxins exhibit varying levels of hemolytic and cytotoxic activity: ApxIA shows the strongest hemolytic and cytotoxic activity, ApxIIA toxin is weakly hemolytic and moderately cytotoxic and ApxIIIA is cytotoxic but nonhemolytic (Frey et al., 1993).

The RTX toxin contains several structural features. Starting from the N-terminus is an amphipathic segment followed by a hydrophobic region that together are responsible for pore-forming activity (Basler et al., 2007; Bellalou et al., 1990). The hydrophobic domains can form α-helical structures that insert into target membrane to create ion cannel (Wiles and Mulvey, 2013). Following the pore-forming region are two conserved lysine residues that must be acylated for the activation of the toxin. Then the defining region of RTX toxins can be found containing 6~50 copies of glycine and aspartate-rich nonapeptide repeats (hence repeats-in-toxin) (Guo et al., 2019). These repeats form β-roll motifs that bind to Ca²⁺ ions for pore-forming activity. Finally, found at the C-terminus of the RTX toxin is a non-cleavable secretion signal that interacts with the T1SS for export (Delepelaire, 2004).

Of the various domains of the RTX toxin, evidence points to the pore-forming domain as a promising vaccine candidate. Seah *et al.* (2002), and Mei *et al.*

(2006), found that the pore-forming domain (residues 40-380) of ApxI provided protection against lethal challenge of *A. pleuropneumoniae* in mice. Another study using a portion of the pore-forming domain (residues 1-200) of ApxII found partial protection (40%) against a challenge test in mice (Seo *et al.*, 2011).

In this study, we analyzed the protective potential of the pore-forming domains of all three Apx toxins. Mice were immunized with the pore-forming domains of ApxI, II and III. Analysis of humoral and cellular immunity was performed and a challenge test was carried out with *A. pleuropneumoniae* serovar 1, the dominant serovar in Taiwan (Yang *et al.* 2011).

Materials and Methods

Bacteria Strain: A. pleuropneumoniae serotype 1 strain 4074 (ATCC® 27088™) was obtained from the American Type Culture Collection (ATCC) and grown in Brain-Heart Infusion Broth supplemented with 15 mg/mL nicotinamide adenine dinucleotide (NAD) at 37 °C.

Recombinant Protein Expression of Apx toxin poreforming domains and vaccine formulation: Expression plasmids for the Apx toxin pore-forming domains were constructed. Genomic DNA from pleuropneumoniae strain 4074 was used for the cloning of ApxI and II pore-forming domains. For ApxIII, genomic DNA (a gift from Dr. Chun-Yen Chu) from a A. pleuropneumoniae serotype 2 strain ATCC® 27089TM was used. Primers shown in Table 1 were used to amplify the pore-forming regions through Polymerase Chain Reaction. For primer design, protein sequences of ApxI, II and III were aligned and the pore-forming region was defined as the first 380 residues of ApxI (Seah et al., 2002). After restriction enzyme digestion, the amplicons were ligated into the expression vector pET32a (Novagen, Darmstadt, Germany). Escherichia coli DH5α (Yeastern Biotech, Taipei, Taiwan) was used for plasmid propagation and the gene clones were sent for sequence confirmation (Genomics, Taipei, Taiwan).

For recombinant protein expression of the Apx toxin pore-forming domains, plasmid constructs were used to transform chemically competent E. coli BL21(DE3) (Yeastern Biotech, Taipei, Taiwan) according to the manufacturer's instructions. Protein expression was induced by adding 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG; Sigma, Darmstadt, Germany) for 4 hours at 37°C. Expressed protein was purified using Bio-scale Mini Profinity IMAC cartridges (1 mL) (Bio-Rad, Hercules, CA, USA). The quality and quantity of the recombinant protein were analyzed using 12% sodium dodecylsulfatepolyacrylamide gel electrophoresis (SDS-PAGE). Western blotting was also performed to confirm the identity of the expressed proteins. As the primary antibody, 6X-His Tag Antibody (Gentex, Hsinchu, Taiwan) at 1:5,000 dilution was used and peroxidaseconjugated goat anti-mouse antibody (Gentex, Hsinchu, Taiwan) at 1:5,000 dilution was used as the secondary antibody. Western Lighting PLUS (PerkinElmer, Waltham, MA, USA) was used for color development. Using the ToxinSensorTM Chromogenic LAL Endotoxin Assay Kit (GenScript, Piscataway, NJ,

USA), the endotoxin level of the protein preparations was shown to be less than 0.125 EU/mL.

Five vaccine formulations were prepared from the recombinant proteins: (1) ApxI-PF, (2) ApxII-PF, (3) ApxIII-PF (4) ApxI-PF+ApxII-PF and (5) PBS as the negative control group. Purified

recombinant proteins (at 25 $\mu g/dose$ final concentration) were mixed with the water-in-oil-in-water adjuvant Montanide ISA 206 (Seppic, Paris, France) at a 1:1 ratio for a final injection volume of 200 μL per mouse.

 Table 1
 Primers for gene cloning and recombinant protein construction.

Target gene	Oligonucleotide Sequence (5' to 3')	Tm (°C)	Gene	Target gene
ApxI-PF	F: GCGGATCC ATGGCTAACTCTCAGCTCG	57	1140	ATCC® 27088™
	R: ACTCGAGAGCCCCAACACCTGCGGAAC			
ApxII-PF	F: GCGGATCCATGTCAAAAATCACTTTGTCATCAT	57	1140	ATCC® 27088™
	R: CGCTCGAGAGCTCCAACTCCACCGGAGAT			
ApxIII-PF	F: CAGGATCCATGAGTACTTGGTCAAGCAT	58	1173	L12145.1
	R: CGCTCGAGGGCGGCCGTTCCAGCTGCG			

Italics and Bold in the primers represent restriction enzyme sites, GGATCC: BamHI Enzyme; CTCGAG: XhoI Enzyme.

Immunization: For immunization, 35 five-week-old female ICR mice from BioLASCO Taiwan Co., Ltd, (Taipei, Taiwan) were randomly assigned into four groups of seven mice for the five vaccine formulations. Immunization was performed twice intraperitoneally on days 0 and 14. For analysis of immune response, blood samples were collected on days 0, 7, 14, 21 and 28 from three mice per group. All animal experimental protocols (NPUST-109-064) were approved by the Animal Care and Use Committee, National Pingtung University of Science and Technology (NPUST).

Antibody Response Analysis: Antibody response elicited by the vaccines was analyzed by indirect enzyme-linked immunosorbent assay (ELISA). Collected whole blood was permitted to coagulate and then centrifuged at 500×g for 7 mins to obtain serum. High-binding 96-well ELISA plates were coated with 10 µg/well of corresponding purified recombinant protein (i.e. ApxI for anti-ApxI serum analysis) overnight at 4°C. The plates were subsequently washed and blocked with skim milk at 37 °C for 1h. Afterwards, serum samples at 1×106 dilution were added as the primary antibody. Horseradish peroxidase (HRP)conjugated anti-mouse IgG (Sigma, Carlsbad, CA, USA) at 1:5,000 dilution was used as a secondary antibody. Finally, the Peroxidase Kit (KPL, Gaithersburg, MD, USA) was used for color development and the plates were read at 450 nm on the MultiskanTM FC Photometer (Thermo Fisher Scientific, Vantaa, Finland).

T-cell response analysis: On day 28, two mice from each vaccine group were sacrificed and splenocytes were isolated for T-cell response analysis. Harvested spleens were mashed through cell strainers and spleen cells were collected in RPMI 1640 Media (Gibco Invitrogen, Carlsbad, CA, USA). Erythrocytes were lysed by treatment with ACK lysis buffer (150 mM NH₄Cl, 10 mM KHCO₃, 0.1 mM Na₂-EDTA, pH 7.4) and the remaining splenocytes were washed three times with Phosphate Buffer Saline (PBS) before resuspension (at 1x106 cells/mL) in RPMI-1640 Media

supplemented with 5% fetal bovine serum (Gibco Invitrogen, Carlsbad, CA, USA).

For analysis of the percentages of CD4⁺ and CD8⁺T cells in the splenocytes on day 14 and 28, cells were stained with anti-CD4-APC or anti-CD8-FITC antibodies (Sino Biological Inc, Wayne, PA, USA) in PBS at 4°C for 30 mins. The splenocyte cells with light scattering properties were then assessed by immunofluorescence on a FACScan cytometer using the Cellquest software (BD Biosciences, San Diego, CA, USA). A total of 10,000 gated events were acquired for each sample.

Cytokine response analysis: To determine the cytokine response of the splenocytes from vaccinated mice, cells (1x106 cells/mL) were stimulated with 10 μ g/mL of the recombinant proteins for 3 hours. Total RNA was then extracted with the Total RNA Extraction Miniprep system (Viogene, Taipei, Taiwan) and complementary DNA (cDNA) was synthesized using the Reverse Transcription Kit (Applied Biosystems, Foster, CA, USA). Real-time PCR was then carried out in the SmartCycler I (Cepheid, Sunnyvale, CA, USA) with primers for the cytokines listed in Table 2. Expression levels of the cytokine genes were normalized to that of thehousekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and expressed as N-fold increase or decrease relative to the PBS control group.

Table 2 Primers for cytokine genes

Gene	Oligonucleotide Sequence (5' to 3')	Tm (°C)	Gene length (bp)	NCBI Reference Sequence
IL-1β	F:AGTTGACGGACCCCAAAAGAT R: CATGGAGAATATCACTTGTT	57	412	M15131.1
IL-4	F:CGAAGAACACCACAGAGAGTGAGCT R:GACTCATTCATGGTGCAGCTTATCG	50	175	M25892.1
IL-6	F:CTTCCATCCAGTTGCCTTCTTG R:AATTAAGCCTCCGACTTGTGA	57	141	M24221.1
IL-8	F: CAAGGGCCAAGAGAATATCC	55	445	BC013615.1
IL-10	R: TTACTATAACATCTTTATAA F: AAGGCAGTGGAGCAGGTGAA	55	155	NM_010548.2
IL-12p40	R: CCAGCAGACTCAATACACAC F: CAGAAGCTAACCATCTCCTGGTTTG	55	396	BC103610.1
IFN-γ	R: CCGGAGTAATTTGGTGCTCCACAC F:AGCGGCTGACTGAACTCAGATTGTAG	55	243	NM_008337.4
TNF-α	R:GTCACAGTTTCAGCTGTATAGGG F:GGCAGGTCTACTTTGGAGTCATTGC	55	300	NM_001278601.1
GADPH	R:ACATTCGAGGCTCCAGTGAATTCGG F: CGGCACAGTCAAGGCCGAGAAT	57	154	M32599.1
	R:AGCCTTCTCCATGGTGGTGAA			

Note: IL: interleukin; IFN-γ: interferon gamma; TNF-α: Tumor Necrosis Factor alpha; GAPDH: glyceraldehyde 3 phosphate dehydrogenase.

Challenge test: Vaccinated mice (n=5 per group) were challenged intraperitoneally with 5x10⁸ CFU (20 LD₅₀) A. pleuropneumoniae ATCC 27088 on day 28. Mice were monitored for seven days and moribund mice satisfying criteria for humane endpoints (as defined by the Animal Use Protocol of NPUST) were sacrificed. All mice were sacrificed at the end of the seven day period.

Statistical analysis: One-way analysis of variance (ANOVA) and Student's F-test were used to compare the differences between groupsfor the analysis ofantibody response, cytokine mRNA levels, and percentages of CD4 $^+$ and CD8 $^+$ T cells. Data was expressed as mean \pm standard error of mean (SEM), and P value less than 0.05 was considered statistically significant. All statistical analyses were performed using SAS version 9.0.

Results

Pore-forming domains of the Apx toxins were expressed and formulated as vaccines: The poreforming domains of ApxI, II and III (Figure 1A and 1B) were cloned and expressed in E. coli. SDS-PAGE analysis showed the target proteins at approximately 63 kDa (pET32a inserts a 20-kDa Trx-His-Senterokinase tag) for the three toxins (Figure 1C). Western blotting using anti-His antibody confirmed the identity of the recombinant proteins (Figure 1D). Protein quantitation showed that the expression quantity of the pore-forming domains can reach as high as 400 mg/mL (ApxIII). The recombinant proteins were formulated with a water-in-oil-in water adjuvant into five vaccines: (1) ApxI-PF, (2) ApxII-PF (3) ApxIII-PF (4) ApxI-PF+ApxIII-PF and (5) PBS as the negative control. Mice were vaccinated twice and immune response analysis performed.

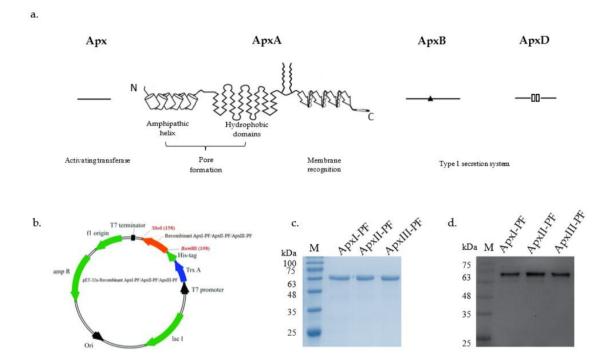


Figure 1 Recombinant protein production of the pore-forming domain of ApxI, II and III. (A) Schematic diagram of a typical RTX toxin gene arrangement, pCABD, is shown. ApxC encodes the activating acyltransferase, ApxA the structural toxin and ApxB and ApxD the type 1 secretion system. (B) Map of constructed pET32a expression vector. (C) SDS-PAGE and (D) Western blot analyses of the purified recombinant proteins.

ApxI pore-forming domain elicited the highest level of antibody response: Analysis of antibody response using indirect ELISA showed that the pore-forming domain of ApxI elicited the highest levels of antibody response among the three toxins on Day 28 (Figure 2). Antibody levels elicited by the pore-forming domains of ApxIII appeared to be only marginally higher (not

statistically significant; P > 0.05) than that of the PBS group. For the vaccine group that included the pore-forming domains of all three toxins, the antibody level was comparable to that of the ApxI group.

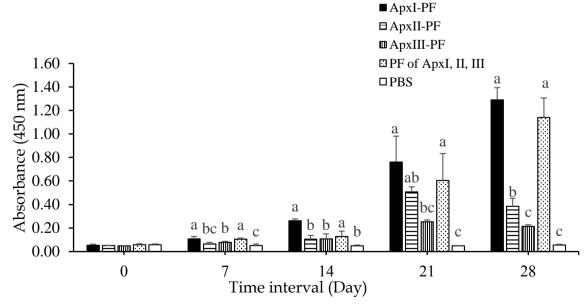


Figure 2 Antigen-specific antibody response of immunized mice. Mice were immunized twice with ApxI-PF, ApxII-PF, ApxIII-PF, PF of Apx I-III and PBS. Serum antibody levels were analyzed by indirect ELISA. Data was presented as mean±SEM. Different superscript letters indicate significant differences (P<0.05) between treatment groups.

ApxI pore-forming domain elicited the highest level of CD4⁺ and CD8⁺ T Cell Expansion: Cellular immune response elicited by the vaccines was examined by measuring the extent of CD4⁺ and CD8⁺ T cell expansion of the splenocytes from the vaccinated mice. For the ApxI group, the percentages of CD4⁺ and CD8⁺ T cells in the splenocytes reached around 19% and 16%, respectively, on both Day 14 and 28 (Figure 3). This is

significantly higher than those of the ApxII and III groups, indicating strong stimulation of cellular immune response by the pore-forming domain of ApxI. For the vaccine group that included the pore-forming domains of all three toxins, the percentages of CD₄₊ and CD₈₊ T cells in the splenocytes were comparable to those of the ApxI group.

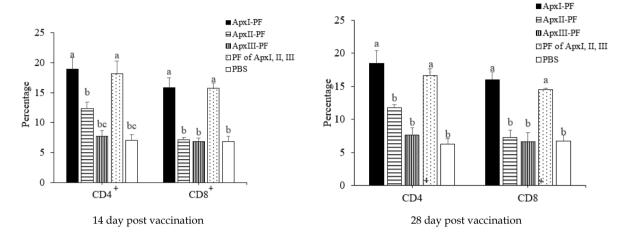


Figure 3 CD4⁺ and CD8⁺ T cell expansion analysis of immunized mice. Mice were immunized twice with ApxI-PF, ApxII-PF, ApxIII-PF, PF of Apx I-III and PBS. On Day 28, two mice from each treatment group were sacrificed and the percentage of CD4⁺ and CD8⁺ cells in the splenocytes was determined. Data was presented as mean±SEM. Different superscript letters indicate significant differences (P<0.05) between treatment groups.

ApxI and II pore-forming domains elicited higher levels of cytokine production than the ApxIII pore-forming domain: The cytokine gene expression profile of splenocytes from vaccinated mice (Day 28) was examined. In terms of proinflammatory cytokines, prominent gene expression of IL-1 β and IL-6 could be observed for the ApxI and II groups. However, for the ApxIII group, very low levels were observed for the four cytokines (IL-1 β , IL-6, IL-8, and TNF- α) analyzed (Figure 4A). This indicates that ApxI and II are more immunostimulatory than ApxIII.

Gene expression of T_H1 -type (IL-12 and IFN- γ) and T_H2 -type (IL-4 and IL-10) cytokines was also

evaluated. For the ApxI and II groups, both T_H1 -type (IFN- γ) and T_H2 -type (IL-4 and IL-10) cytokine gene expressions were observed. In contrast, for the ApxIII group, only a low level of IL-10 expression was detected (Figure 4B). Overall, ApxI and II pore-forming domains elicited higher levels of both T_H1 and T_H2 -type cytokine production than the ApxIII pore-forming domain, indicating a more balanced immune response. Furthermore, for the vaccine group that included the pore-forming domains of all three toxins, the cytokine expression profile resembled that of the ApxI vaccine group.

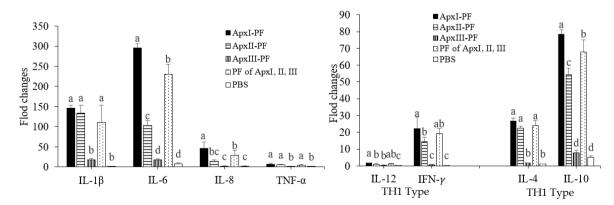


Figure 4 Cytokine gene expression of splenocytes from immunized mice. Mice were immunized twice with ApxI-PF, ApxII-PF, ApxIII-PF, PF of Apx I-III and PBS. On Day 28, two mice from each treatment group were sacrificed and isolated splenocytes were stimulated with purified antigens. Relative mRNA expression levels of various cytokines were determined. Data were presented as mean±SEM. Different superscript letters indicate significant differences (P<0.05) between treatment groups.

ApxI pore-forming domain provided 100% protection against lethal challenge: Vaccinated mice were challenged using the A. pleuropneumoniae serotype 1 strain. Results showed that the pore-forming domain of ApxI provided 100% protection (Figure 5). Partial protection of 40% was observed for the ApxII vaccine group. The ApxIII group, just as the PBS control group, afforded no protection. For the vaccine group that

included the pore-forming domains of all three toxins, 100% protection was observed. The vaccine including ApxI-PF groups provided a significant boost to protective efficacy. The lung gross lesions of sacrificed mice are shown in Fig 6., the vaccine including with ApxI-PF groups showed significantly less bleeding than PBS groups.

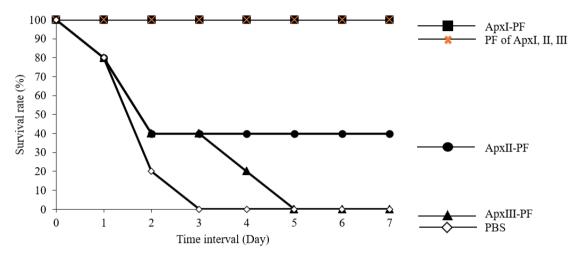


Figure 5 Survival rate of immunized mice when challenged with *Actinobacillus pleuropneumoniae* strain 4707. Mice (n=5) were immunized twice with ApxI-PF, ApxII-PF, and PBS and challenged with 5x108 CFU/dose *A. pleuropneumoniae*.

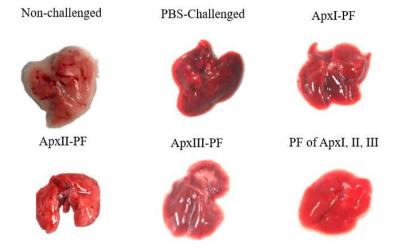


Figure 6 Gross lesions of the lungs of mice after challenge with *Actinobacillus pleuropneumoniae* strain 4707. Mice (n=5) were immunized twice the five vaccine formulations and challenged with 10 LD₅₀ with 5x10⁸ CFU/dose *A. pleuropneumoniae*.

Discussion

In this study, we found significant differences in the protective efficacy of the pore-forming domains of the three different Apx toxins against *A. pleuropneumoniae* serovar 1: ApxI (100%), ApxII (40%), and ApxIII (0%). Also, for the vaccine group that included the pore-forming domains of all three toxins, 100% protection was observed, the same as the ApxI group. There are currently 19 recognized serotypes of *A. pleuropneumoniae* (Stringer *et al.*, 2021) and different serotypes express various combinations of the Apx toxins (Jung *et al.*, 2019). For example, serovar 1 expresses ApxI and II while serovar 2 expresses ApxII and III (Boekema *et al.*, 2004). Since ApxIII is not expressed by the serotype 1 strain used for the

challenge test, it is not too surprising that the ApxIII pore-forming domain afforded no protection. However, as a counter point, amino acid sequence comparison of ApxI and ApxIII pore-forming domains showed 51.3% homology, suggesting the possibility of cross-protection. It is still possible that cross-protective epitopes remain in the ApxIII pore-forming domain and that further epitope isolation or adjuvant enhancement could make the ApxIII pore-forming domain a protective antigen even against *A. pleuropneumoniae* serovar 1. Nevertheless, based on the protective rates observed in our study, a logical vaccine design could be to combine the pore-forming domains of all three toxins for protective efficacy evaluation against the numerous serotypes of *A. pleuropneumoniae*.

In trying to pinpoint the protective domains within the Apx toxins, one important factor to consider is the role the pore-forming domain plays in the hemolytic vs. leukolytic activity of the toxin (Ostolaza et al., 2019). Since it is now known that leukolytic activity is the main contributor of pathogenesis, it is essential to know whether leukolytic activity resides, at least in part, within the pore-forming domain (Linhartová et al., 2010). For example, one study mapped the leukolytic and pro-apoptotic epitopes to the N-terminal (residues 1-160), activation and C-terminal (residues 825-1000) domains of ApxIII (Seah and Kwang, 2004). In vitro evaluation using porcine macrophages can help pinpoint epitopes involved in leukolytic activity.

While the initial evaluation of protective efficacy was performed in mice in our study, final confirmation of protection in pigs is important since the leukolytic activity of RTX toxins is known to be speciesdependent. One study showed that ApxIII can induce cell death of peripheral blood mononuclear cells from pigs and wild boars but not those from llama, humans, dogs, rats, mouse, cattle or goats (Bergh et al., 2008). At the molecular level, the target cell receptor for ApxIII has been demonstrated to be the porcine integrin β_2 subunit (CD18), as a non-susceptible human cell line can be made susceptible to ApxIII leukolytic activity by transient expression of an integrin containing porcine CD18 (Bergh et al., 2009; Ristow and Welch, 2019). Given the host-specificity of the RTX toxin leukolytic activity, data obtained from mice experiments will need to be reconfirmed in the target animal.

In conclusion, we performed an initial analysis of the protective efficacy of the Apx toxin pore-forming domains in mice. Results showed a range of protection rates for the three Apx toxins and indicated that the pore-forming domains can be further evaluated for leukolytic activity in porcine macrophages and protective efficacy in pigs.

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

References

- Atapattu DN, and Charles JC 2007. Mannheimia Haemolytica Leukotoxin Binds to Lipid Rafts in Bovine Lymphoblastoid Cells and Is Internalized in a Dynamin-2- and Clathrin-Dependent Manner. Infect Immun. 75 (10): 4719–27.
- Aulik NA, Katrina MH, and Charles JC 2012. Mannheimia Haemolytica and Its Leukotoxin Cause Macrophage Extracellular Trap Formation by Bovine Macrophages. Infect Immun. 80 (5): 1923–33.
- Basler M, Oliver K, Jiri M, Radovan F, Elke M, Roland B, Peter S, and Radim O 2007. Segments Crucial for Membrane Translocation and Pore-Forming Activity of Bordetella Adenylate Cyclase Toxin. J Biol Chem. 282 (17): 12419–29.
- Bellalou J, Sakamoto H, Ladant D, Geoffroy C, and Ullmann A 1990. Deletions Affecting Hemolytic

- and Toxin Activities of Bordetella Pertussis Adenylate Cyclase." Infect Immun. 58 (10): 3242– 47
- Bergh PGV, Zecchinon LL, Thomas F., and Daniel D. 2008. Probing of *Actinobacillus Pleuropneumoniae* ApxIIIA Toxin-Dependent Cytotoxicity towards Mammalian Peripheral Blood Mononucleated Cells." BMC Research Notes. 1: 1–7.
- Bergh PGV, Zecchinon LL, Thomas F, and Daniel D 2009. Porcine CD18 Mediates *Actinobacillus Pleuropneumoniae* ApxIII Species-Specific Toxicity. Vet Res. 40 (4).
- Boekema BK, Elbarte MK, Mari AS, Hilde ES, and Norbert SZ 2004. Both ApxI and ApxII of *Actinobacillus Pleuropneumoniae* Serotype 1 Are Necessary for Full Virulence. Vet Microbiol. 100 (1–2): 17–23.
- Chen ZW, Maw SC, Nai YC, Ter HC, Chi MW, Chienjin H, Wei CL, and Shih LH 2011. Mechanisms Underlying *Actinobacillus Pleuropneumoniae* Exotoxin ApxI Induced Expression of IL-1β, IL-8 and TNF- α in Porcine Alveolar Macrophages. Vet res. 42 (1): 1–10.
- Chiers K, Tine DW, Frank P, Richard D, and Freddy H 2010. Virulence Factors of *Actinobacillus Pleuropneumoniae* Involved in Colonization, Persistence and Induction of Lesions in Its Porcine Host. Vet Res. 41 (5).
- Delepelaire P 2004. Type I Secretion in Gram-Negative Bacteria. BBA MCR. 1694 (1-3 SPEC.ISS.): 149–61.
- Frey J, Bosse JT, Chang YF, Cullen JM, Fenwick B, Gerlach GF, Gygi D 1993. *Actinobacillus Pleuropneumoniae* RTX-Toxins: Uniform Designation of Haemolysins, Cytolysins, Pleurotoxin and Their Genes. J Gen Microbiol. 139 (8): 1723–28.
- Frey Jo 2019. RTX Toxins of Animal Pathogens and Their Role as Antigens in Vaccines and Diagnostics. Toxins. 11 (719).
- Frey J, Andreas H, Jacques N, Andrea B, and Pierre P 1994. Sequence Analysis and Transcription of the ApxI Operon (Hemolysin I) from *Actinobacillus Pleuropneumoniae*. Gene. 142 (1): 97–102.
- Guo S, Tyler DV, Corey AS, Ilja V, and Peter LD 2019. RTX Adhesins Are Key Bacterial Surface Megaproteins in the Formation of Biofilms. Trends Microbiol. 27 (5): 453–67.
- Hiyoshi T, Hisanori D, Tomoki M, Kosuke N, Hikaru T, Naoki T, Daisuke Y 2019. Aggregatibacter Actinomycetemcomitans Induces Detachment and Death of Human Gingival Epithelial Cells and Fibroblasts via Elastase Release Following Leukotoxin-Dependent Neutrophil Lysis. MIcrobiol Immunol. 63 (3–4): 100–110.
- Jansen R, Briaire J, Geel ABV, Kamp EM, Gielkens ALJ, and Smits MA 1994. Genetic Map of the *Actinobacillus Pleuropneumoniae* RTX-Toxin (Apx) Operons: Characterization of the ApxIII Operons. Infect Immun. 62 (10): 4411–18.
- Jarma E and Regassa LB 2004. Growth Phase Mediated Regulation of the *Actinobacillus Pleuropneumoniae* ApxI and ApxII Toxins. Microb Pathogenesis. 36 (4): 197–203.
- Jung M, Hokeun W, Min KS, Myung WO, Soojin S, Injoong Y, and Han SY 2019. Development of

- Actinobacillus Pleuropneumoniae ApxI, ApxII, and ApxIII-Specific ELISA Methods for Evaluation of Vaccine Efficiency. J Vet Sci. 20 (2).
- Lally ET, Hill RB, Irene R. Kieba, and Jon Korostoff 1999. The Interaction between RTX Toxins and Target Cells. Trends Microbiol. 7 (9): 356-61.
- Linhartová I, Ladislav B, Jiř M, Marek B, Radim O, Jana K, Kateřina P 2010. RTX Proteins: A Highly Diverse Family Secreted Bya Common Mechanism. FEMS Microbiol Rev. 4 (6): 1076–1112.
- Loera-Muro A, and Carlos A 2018. New Trends in Innovative Vaccine Development against *Actinobacillus Pleuropneumoniae*. Vet Microbiol. 217 (December 2017): 66–75.
- Los FO, Tara MR, Aroian RV and Adam JR 2013. Role of Pore-Forming Toxins in Bacterial Infectious Diseases. Microbiol Mol Biol R. 77 (2): 173–207.
- Marsteller TA, and Brad F 1999. *Actinobacillus Pleuropneumoniae* Disease and Serology. J Swine Health Prod. 7 (4): 161–65.
- Mei L, Rui Z, Hai SL, Wei CB, Wei HL, Li WL, Wen ZH and Huan CC 2006. Study on the Immunogenicity of N-Terminal Polypeptide of RTX Toxin I of *Actinobacillus Pleuropneumoniae*. Chinese J Biotechnol. 22 (1): 39–45.
- Ostolaza H, David GB, Kepa BU, Cesar M, Jone A and Xabier FM 2019. Membrane Permeabilization by Pore-Forming Rtx Toxins: What Kind of Lesions Do These Toxins Form? Toxins. 11 (6).
- Ristow LC, and Rodney AW 2019. RTX Toxins Ambush Immunity's First Cellular Responders. Toxins. 11 (12): 1–16.
- Sassu EL, Bossé JT, Tobias TJ, Gottschalk M, Langford PR, and Hennig-Pauka I 2018. Update on *Actinobacillus Pleuropneumoniae* Knowledge, Gaps and Challenges. Transbound Emerg Dis. 65 (February): 72–90.
- Seah JN, Frey J and Kwang J 2002. The N-Terminal Domain of RTX Toxin ApxI of *Actinobacillus Pleuropneumoniae* Elicits Protective Immunity in Mice. Infect Immun. 70 (11): 6464–67.
- Seah JN and Kwang J 2004. Localization of Linear Cytotoxic and Pro-Apoptotic Epitopes in RTX Toxin ApxIII of *Actinobacillus Pleuropneumoniae*. Vaccine. 22 (11–12): 1494–97.
- Seo K, Dong HK, Ah HK, Han SY, Kyung YL, and Yong SJ 2011. Characterization of Antigenic Determinants in ApxIIA Exotoxin Capable of Inducing Protective Immunity to *Actinobacillus Pleuropneumoniae* Challenge. Immunol Invest. 40 (5): 465–80.
- Stanley P, Koronakis V and Hughes C 1998. Acylation of Escherichia Coli Hemolysin A Unique Protein Lipidation. Microbiol Mol Biol R. 62 (2): 309–33.
- Stringer OW, Janine TB, Sonia L, Marcelo G, László F, Øystein A, Eduardo V 2021. Proposal of *Actinobacillus Pleuropneumoniae* Serovar 19, and Reformulation of Previous Multiplex PCRs for Capsule-Specific Typing of All Known Serovars. Vet Microbiol. 255 (2).
- Wiles TJ and Matthew AM 2013. The RTX Pore-Forming Toxin α-Hemolysin of Uropathogenic Escherichia Coli: Progress and Perspectives. Future Microbiol. 8 (1): 73–84.

- Yang CY, Chao NL, Chuen FL, Tsung CC, and Ming TC 2011. Serotypes, Antimicrobial Susceptibility, and Minimal Inhibitory Concentrations of Actionbacillus Pleuropneumoniae Isolated from Slaughter Pigs in Taiwan (2002-2007)." J Vet Med Sci. 73 (2): 205–8.
- Yoo HJ, Seungwoo L and Doug YR 2020. Role of the ApxIB/ApxID Exporter in Secretion of the ApxII and ApxIII Toxins in *Actinobacillus Pleuropneumoniae*. Korean J Vet Res. 60 (4): 225–28.