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Abstract 

 

 The objective of this study was to examine the expression of 4 clinically-important Mex systems including 
MexAB-OprM, MexCD-OprJ, MexEF-OprN and MexXY in the Pseudomonas aeruginosa clinical isolates from dogs and 
cats. The isolates exhibited high level of resistance to multiple antibiotics clinically important. All of them 
simultaneously overexpressed up to three different Mex systems, including MexAB-OprM, MexEF-OprN and MexXY 
as determined by RT-PCR. None of the isolates overexpressed MexCD-OprJ. Expression of mexF was measured by 
using quantitative real-time RT-PCR. Transcription level of mexF varied (i.e. 4-219 fold) but was at least 4 fold higher 
than that of PAO1. DNA sequence analysis of mexT suggested the existence of uncharacterized regulatory mechanism 
(s) of MexEF-OprN expression besides MexT. The results underscored the contribution of Mex systems in multidrug 
resistance phenotype of the P. aeruginosa clinical isolates from dogs and cats. 
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Introduction 

Pseudomonas aeruginosa is an important 
opportunistic pathogen that inflicts diseases in both 
humans and animals. In dogs and cats, this pathogen 
is notoriously known as a common cause of chronic 
and recurrent infections, most notably otitis 
externa/media, pyoderma and urinary tract infection 
(Petersen et al., 2002; Gatoria et al., 2006; Hariharan et 
al., 2006). Chronic Pseudomonas infections usually 
require constant treatment with different antibiotic 
mixtures. However, P. aeruginosa is infamous for its 
multidrug resistance phenotype that is mainly 
attributed to the synergy between low outer membrane 
permeability and expression of multidrug efflux 
systems, particularly those in the Resistance-
Nodulation-Cell Division (RND) family (Aksamit, 
1993; Lister et al., 2009).  

The P. aeruginosa genome contains up to 12 
structural genes for the RND efflux systems, of which 
four are clinically important (i.e. MexAB-OprM, 
MexCD-OprJ, MexEF-OprN and MexXY) (Lister et al., 
2009). The RND multidrug efflux systems function as 
tripartite systems consisting of a cytoplasmic 
membrane-associated RND transporter (e.g. MexB, 
MexD, MexF, MexY), periplasmic membrane fusion 
protein (MFP) (e.g. MexA, MexC, MexE and MexX) 
and an outer membrane protein (e.g. OprM, OprJ, and 
OprN) (Poole and Srikumar, 2001). MexAB-OprM and 
MexXY are constitutively expressed and contribute to 
intrinsic resistance to many antibiotics (Lister et al., 
2009). MexXY is the only Mex system that mediates 
natural resistance to aminoglycosides (AMG) and 
additionally extrudes antibiotic substrates including 
tetracycline, macrolides and fluoroquinolones 
(Masuda et al., 2000). MexCD-OprJ is normally 
quiescent in wild-type P. aeruginosa and is upregulated 
in the mutant strains with impaired regulatory genes, 
nfxB (Schweizer, 1998). Its antibiotic substrates include 

some -lactams, fluoroquinolones, macrolides and 
tetracycline (Morita et al., 2001). Correspondingly, 
MexEF-OprN is typically silent in wild-type cells and 
overproduced in the nfxC-type mutants. This Mex 
system confers resistance to several antibiotics, e.g. 
imipenem, fluoroquinolones, chloramphenicol, 
trimethroprim and tetracycline (Kohler et al., 1997).  

Bacterial efflux pump inhibitors (EPIs) have 
been researched and become promising therapeutic 
agents (Lomovskaya and Watkins, 2001). The 
molecules are potential for use in combination with 
antibiotic therapy and expected to restore the activity 
of standard antibiotics by increasing the intracellular 
concentration of antibiotics that are expelled by the 
Mex pumps. The EPI-antibiotic combination is 
anticipated to be a novel medical treatment options for 
infections with P. aeruginosa in either humans or 
animals (Tegos et al., 2002). Therefore, the need to 
understand the role and functions of Mex systems has 
been elevated to accomplish new therapeutic efforts. 
Up to date, contribution of the Mex pumps has been 
extensively studied in the P. aeruginosa human isolates. 
Previous studies showed coexpression of Mex systems 
in the human isolates and their variable impact on 
antibiotic susceptibility has been observed (Aendekerk 
et al., 2002; Wolter et al., 2004; Sevillano et al., 2006). In 

contrast, knowledge of the Mex systems in the animal 
isolates is still limited. We previously described the 
function and involvement of the MexXY efflux pump 
in AMG resistance in the clinical isolates from cow 
mastitis (Chuanchuen et al., 2008), dogs and cats 
(Poonsuk et al., 2014).  In this study, we aimed to 
examine the expression of 4 clinically important Mex 
systems including MexAB-OprM, MexCD-OprJ, 
MexEF-OprN and MexXY in the MDR P. aeruginosa 
clinical isolates from dogs and cats. 

Materials and Methods 

Bacterial isolates and growth conditions: Ten P. 
aeruginosa clinical isolates from dogs and cats were 
included in this study (Table 1). All were characterized 
for the expression of MexXY in our previous study 
(Poonsuk and Chuanchuen, 2012). All isolates were 
originated from samples that were collected from dogs 
and cats at Small Animal Hospital during 2005-2010 
and submitted for bacterial isolation at the VDL. A 
single P. aeruginosa colony was collected from each 
positive sample. However, genetic relatedness of the 
isolates was not examined. P. aeruginosa strain PAO1, 
constitutively produces MexAB-OprM, was used as a 
reference strain in gene expression experiments 
(Watson and Holloway, 1978). All the P. aeruginosa 
strains were grown on Luria Bertani (LB) broth and LB 
agar (Difco, BD Diagnostic Systems, MD, USA). For 
antimicrobial susceptibility testing, the isolates were 
grown on Mueller-Hinton agar (MHA; Difco) and in 
Mueller-Hinton broth (MHB; Difco) with adjusted 
concentrations of Ca2+ and Mg2+.  
 
Antimicrobial susceptibility testing: Minimum 
Inhibitory Concentrations (MICs) of 17 antimicrobials 
were determined by using two-fold agar dilution and 
broth microdilution method according to Clinical and 
Laboratory Standards Institute (CLSI) guidelines 
(CLSI, 2013). The antibiotics included carbenicillin 
(Car), ciprofloxacin (Cip), tetracycline (Tet), 
ceftaxidime (Ctz), trimethoprim (Tri), chloramphenicol 
(Chp), amikacin (Amk), gentamicin (Gen), kanamycin 
(Kan), neomycin (Neo), streptomycin (Str), 
spectinomycin (Spc), tobramycin (Tob), erythromycin 
(Ery), imipenem (Imp), sulfonamide (Sul) and 
ticarcillin (Tic). CLSI-MIC breakpoints were used 
when available (Table 3). The CLSI interpretive 
breakpoints for the Enterobacteriaceae and those in 
published data were used for antimicrobials that 
lacked the CLSI breakpoints, i.e. streptomycin, 
neomycin and tobramycin (Rubin et al., 2008). 
Experiments were performed in triplicate and repeated 
independently twice. P. aeruginosa ATCC 27853 and 
wild-type PAO1 were used as quality control 
organisms. 
 
PCR and DNA sequencing: All the primer pairs used in 
this study are listed in Table 2. PCR amplifications 
were performed using KAPATaq ReadyMix DNA 
polymerase (Kapabiosystems, Boston, MA, USA) as 
described in the manufacturer’s protocol. mexT gene 
was PCR-amplified using primers mexT1up and 
mexT2down. PCR products were purified directly or 
from agarose gels using Nucleospin ExtractII 
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(Mccherey-Nagel, Düren, Germany) and submitted for 
nucleotide sequencing at 1stBASE Pte, Ltd (Singapore 
Science Park II, Singapore). DNA sequencing results 
were compared to the mexT sequence of wild-type 
strain, PAO1 available at the Pseudomonas Genome 
Project (http://pseudomonas.com). 
 

Reverse transcription (RT)-PCR: All isolates were 
screened for the transcription of MexB, MexD and 
MexF using conventional RT-PCR. Total RNA was 
extracted using Total RNA Extraction Mini kit (RBC 

Bioscience, Taipei, Taiwan) and treated with RNase-
free DNaseI (Fermentus, Ontario, Canada). Single 
stranded-cDNA was synthesized from one-µg DNase 

treated RNA using ImProm-II Reverse Transcriptase 
(Promega, Madison, WI, USA) with reverse             
primers specific to mexB (mexBRTup/mexBRT     
down),  mexD (mexDRTup/mexDRTdown), mexF 
(mexFRTup/mexFRTdown) and mexY 
(mexYRTup/mexYRTdown).       The cDNA was used 
as the template for PCR amplification using the specific 
primer pairs as described above.  

 
Table 1 Bacterial strains used in this study  

 

Strain  Source Reference 

PAO1 Wild-type Watson and Holloway (1978) 
PAJ227 Urine from cat Poonsuk and Chuanchuen (2012) 
PAJ228 Feline nasal cavity Poonsuk and Chuanchuen (2012) 
PAJ229 Urine from cat Poonsuk and Chuanchuen (2012) 
PAJ230 Feline nasal cavity Poonsuk and Chuanchuen (2012) 
PAJ232 Otitis ear in dog Poonsuk and Chuanchuen (2012) 
PAJ233 Pus from wound in cat Poonsuk and Chuanchuen (2012) 
PAJ235 Urine from dog Poonsuk and Chuanchuen (2012) 
PAJ239 Pus from wound in cat Poonsuk and Chuanchuen (2012) 
PAJ240 Otitis ear in dog Poonsuk and Chuanchuen (2012) 
PAJ245 Pus from wound in cat Poonsuk and Chuanchuen (2012) 

 
Table 2 Primers used in this study 

 

Gene Primer Sequence (5´-3´) Reference 

mexB mexBRTup ATCTACCGGCAGTTCTCC Poonsuk et al. (2014) 
 mexBRTdown CGATCACCACGTAGATCAG Poonsuk et al. (2014) 
mexD mexDRTup CTACCCTGGTGAAACAGC Poonsuk et al. (2014) 
 mexDRTdowm AGCAGGTACATCACCATCA Poonsuk et al. (2014) 
mexF mexFRTup CATCGAGATCTCCAACCT Poonsuk et al. (2014) 
 mexFRTdown GTTCTCCACCACCACGAT Poonsuk et al. (2014) 
mexY mexYRTup AGCTACAACATCCCCTA Chuanchuen et al. (2008) 
 mexYRTdown AGCACGTTGATCGAGAAG Chuanchuen et al.  (2008) 
mexT mexT1up CAGTTCGAAGCCGAGACC Poonsuk et al. (2014) 
 mexT2down AGCGGTTGTTCGATGACTTC Poonsuk et al. (2014) 
rpsL rpsLrealtimeup CGGCACTGCGTAAGGTATG Chuanchuen et al. (2008) 
 rpslrealtimedown CCCGGAAGGTCCTTTACACG Chuanchuen et al. (2008) 

 
Quantitative real-time PCR (qRT-PCR): Expression 
level of mexF was quantified by qRT-PCR as previously 
described with some modifications (Chuanchuen et al., 
2008; Islam et al., 2009). One µg of total RNA was used 
to synthesize cDNA as described above. The cDNA 

obtained was quantified using KAPA SYBR FAST 
qPCR kit (Kapabiosystems). PCR assays were 
performed in triplicate. The average cDNA copy 
numbers of mexT was estimated using Ct values from 
two separate experiments (SD< 0.1). The average mexF 
cDNA copy number was normalized with that of rpsL, 
a house keeping gene serving as the internal control. 
The transcription level of mexF was compared to PAO1 
and presented as fold change ratios.  

Results 

Antimicrobial susceptibility: All the isolates exhibited 
resistance to at least 9 antimicrobial agents tested 
(Table 3).  All were resistant to tetracycline, 
trimethoprim, chloramphenicol, streptomycin, 
spectinomycin and erythromycin. High MIC level 

(≥256 g/ml) was observed for trimethoprim, 
chloramphenicol, sulphonamide and spectinomycin in 

all isolates (data not shown). All the isolates but one 
(i.e. PAJ237) were susceptible to imipenem. 
 
Expression of Mex systems: The results from 
conventional RT-PCR showed that all the clinical 
isolates expressed MexB, MexF and MexY (Table 3). 
None were found to produce MexD. Transcription 
level of mexF was determined with qRT-PCR and was 
found to be at least 4-fold higher than that of PAO1 (i.e. 
4-219 fold) in all the isolates (Table 3). The MexF 
expression level was higher than 50-fold in most 
isolates (i.e. PAJ227, PAJ230, PAJ233, PAJ235 and 
PAJ240). Among these isolates, PAJ235 produced the 
highest MexF, 219-fold greater than that of PAO1.  
 
Mutation (s) in mexT: Four clinical isolates were 
selected for nucleotide sequencing analysis of mexT. 
Two of them were the clinical isolates with high MexF 
expression level (i.e. PAJ235, 219 fold and PAJ240, 75 
fold). The others were those with lowest-MexF 
production (i.e. PAJ228, 8.5 fold and PAJ229, 4 fold). In 
comparison to mexT sequence of PAO1, all four clinical 
isolates tested lacked insertion of 8 nucleotides 
(5´cggccagc3´) between nucleotide positions 104 to 105 
of mexT. All additionally had a single point mutation 
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that is a replacement of T385 with A leading to a Phe-
129- Ile substitution in MexT. The lowest expression 
level (4 fold) was observed in PAJ229. 

Discussion 

In this study, 10 P. aeruginosa clinical isolates 
originated from dogs and cats were assessed for 
antimicrobial resistance and expression of Mex 
systems. However, the isolates could not be traced 
back to the exact antibiotic exposure due to the 
unsystematic recording of the antibiotic therapy. All 
the isolates were resistant to multiple drugs of different 
classes. Such simultaneous decreased susceptibilities 
to a variety of antibiotics were indicative of the 
expression of one or many nonenzymatic resistance 
mechanism in these isolates, including Mex systems of 
the RND family.  

One of the major findings was that three Mex 
systems including MexAB-oprM, MexEF-OprN and 
MexXY expressed simultaneously in the P. aerginosa 
isolates obtained from dogs and cats. This is consistent 
with a previous study reporting coexpression of two 
Mex systems, i.e. MexAB-OprM/MexXY and MexAB-
OprM/MexEF-OprN in the isolates from canine ears 
(Beinlich et al., 2001). The concomitant expression of 
Mex systems has been previously shown in human 

clinical isolates in several studies, for example, 
MexXY/MexJK (Hocquet et al., 2006), MexAB-
OprM/MexXY (Hocquet et al., 2006; Llanes et al., 
2011), and MexAB-OprM/MexCD-OprJ (Llanes et al., 
2011). Recently, our study reported the simultaneous 
expression of up to four Mex systems in a P. aeruginosa 
clinical isolate from non-CF patients (Poonsuk et al., 
2014). Taken together, these results support the wide 
expression of the RND-multidrug efflux systems and 
their contribution to multidrug resistance in the P. 
aruginosa clinical isolates from humans and animals.   

All the animal isolates in the present study 
expressed MexAB-OprM, in agreement with a 
previous study of the clinical isolates from various 
animal sources (Beinlich et al., 2001). This confirms the 
constitutive expression of MexAB-OprM in the P. 
aeruginosa animal isolates and its role in intrinsic 
resistance to antimicrobials. The expression of MexXY 
was observed in all the isolates in this collection as 
previously determined (Poonsuk et al., 2014). It was 
shown that MexXY played a role in AMG resistance in 
the dog and cat isolates. However, MexXY expression 
alone did not fully account for AMG resistance 
observed, suggesting the existence of additional 
uncharacterized AMG resistance mechanisms 
(Poonsuk et al., 2014). 
 

 
Table 3 Phenotypic and genetic characteristics of P. aeruginosa clinical isolates from dogs and cats (n=10) 
 

Strain Mex expression Transcription 
level of MexF 

mexT 
mutationa 

MIC (g/ml) Resistance pattern 

MexB MexD MexF MexY Imp Chp Tri Tet 

PAO1 + - - + 1 (+) 1 32 256 32 Chp-Tri-Tet 
PAJ 
227 

+ - + + 95 ND 1 >256 >256 64 Car-Tet-Tri-Chp-Str-
Spc-Ery-Sul-Tic 

PAJ 
228 

+ - + + 8.5 (-)b 1 >256 >256 128 Car-Tet-Tri-Chp-Gen-
Kan-Str-Spc-Ery-Sul-
Tic 

PAJ 
229 

+ - + + 4 (-)b 2 >256 >256 64 Tet-Tri-Chp-Gen-Kan-
Neo-Str-Spc-Ery-Sul-
Tic 

PAJ 
230 

+ - + + 48.5 ND 1 >256 >256 128 Cip-Tet-Tri-Chp-Kan-
Neo-Str-Spc-Ery-Sul-
Tic 

PAJ 
232 

+ - + + 50.5 ND 2 256 >256 64 Tet-Tri-Chp-Str-Spc-
Tob-Ery-Sul-Tic 

PAJ 
233 

+ - + + 52.5 ND 0.5 256 >256 64 Tet-Tri-Chp-Kan-Neo-
Str-Spc-Ery-Sul-Tic 

PAJ 
235 

+ - + + 219 (-)b 1 >256 >256 64 Tet-Tri-Chp-Kan-Neo-
Str-Spc-Ery-Sul-Tic 

PAJ 
237 

+ - + + 10.5 ND 16 >256 >256 >256 Tet-Tri-Chp-Gen-Kan-
Neo-Str-Spc-Ery-Imp-
Sul-Tic 

PAJ 
239 

+ - + + 39 ND 2 256 >256 64 Tet-Tri-Chp-Kan-Str-
Spc-Ery-Sul-Tic 

PAJ 
240 

+ - + + 75 (-)b 1 256 >256 64 Car-Tet-Tri-Chp-Kan-
Neo-Str-Spc-Ery-Sul-
Tic 

Breakpoint 16 32 4 16  
     a(+), with or (-), without insertion of 8 nucleotides (5'cggccagc3') 
    bwith an additional mutation Phe(TTC)-129-Ile(ATC) 
    ND= not determined 
 

Of particular interest is the expression of 
MexEF-OprN in all the P. aeruginosa isolates from dogs 
and cats. This is inconsistent with a previous study 
showing that only 1 of 12 P. aeruginosa from various 
animals expressed this efflux system (Beinlich et al., 
2001). This discrepancy could be associated with the 

genetic diversity of the P. aeruginosa isolates from 
different geographical region and also different 
antibiotic exposure in different hospital settings. As 
expected, the isolates in this study were highly 
resistant to chloramphenicol, trimethoprim and 
tetracycline, which are specific substrates of MexEF-
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OprN (Kohler et al., 1997). In contrast, only one isolate 
(i.e. PAJ237) was resistant to imipenem. Previous 
studies demonstrated coregulation of MexEF-OprN 
and an outer membrane protein, OprD. The 
coregulation is mediated by MexT and results in up-
regulated MexEF-OprN and down-regulated OprD 
(Kohler et al., 1997). Mutants with up-regulated 
MexEF-OprN and down-regulated OprD were 
exclusively resistant to carbapenems, including 
imipenem. In this case, the concerted decrease in OprD 
(not overexpressed MexEF-OprN) significantly 
contributes to imipenem resistance in the nfxC-type 
mutants (Kohler et al., 1997; Ochs et al., 1999). 
However, the expression of OprD was not pursued in 
this study.  

MexEF-OprN is a distinctive Mex pump. This 
is because it is the only Mex system, of which 
expression is regulated by a transcriptional activator of 
LysR-type family, MexT, encoded by mexT located 
upstream of the operon in the same orientation 
(Maseda et al., 2000). The results from DNA sequence 
analysis revealed that an 8-bp insertion in mexT was 
omitted in all four nfxC-type mutants selected. This 
absence may be a result of additional mutation (s) or 
deletion (s) in mexT that converted the inactive form of 
MexT to its active form, resulting in overexpression of 
MexEF-OprN (Maseda et al., 2000). MexT in these 
clinical isolates harbored an additional mutation 
Phe(TTC)-129-Ile(ATC) and therefore, it was expected 
to be inactive. Still, all these four isolates overproduced 
MexEF-OprN. This observation suggests the existence 
of uncharacterized regulatory mechanism (s) of 
MexEF-OprN expression besides MexT. Some studies 
demonstrated that MexEF-OprN expression was 
modulated by MexS (Sobel et al., 2005) and MvaT 
(Westfall et al., 2006). On the contrary, another study 
suggested the existence of uncharacterized-regulatory 
mechanism (s) that was not associated with mexT, mexS 
or mvaT (Wolter et al., 2008). Further studies are 
warranted to elucidate machinery regulation of 
MexEF-OprN expression in the clinical isolates in this 
study. 

In the present study, none of the P. aeruginosa 
isolates expressed MexCD-OprJ, in agreement with 
previous studies in the animal (Beinlich et al., 2001) 
and human isolates (Llanes et al., 2011; Poonsuk et al., 
2014). This confirms that the P. aeruginosa isolates 
producing MexCD-OprJ is scarce in clinical settings for 
both animals and humans.   

In conclusion, the observations highlighted 
the coexpression of Mex systems that could 
superimpose their antimicrobial efflux capability and 
the significance of Mex systems that are normally silent 
in the P. aeruginosa isolates form dogs and cats. For new 
development in antibiotic therapy, the results suggest 
that the broad-spectrum EPIs, which are active against 
all known Mex systems, are more efficient in their 
potentiating activity of antibiotics and therefore, are 
more clinically functional and useful. 
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บทคัดย่อ 

 

การแสดงออกของระบบ Multidrug efflux 3 ระบบพร้อมกันใน Pseudomonas aeruginosa 

ดื้อยาหลายชนิดพร้อมกันที่แยกได้จากสุนัขและแมว 

 

กานต์ชนา พูนสขุ1 และ รุ่งทิพย์ ชวนชืน่1 
  

การวิจัยครั้งน้ีมีวัตถุประสงค์เพื่อทดสอบการแสดงออกของระบบ Mex จ านวน 4 ระบบท่ีมีความส าคัญทางคลินิก คือ ระบบ 
MexAB-OprM, MexCD-OprJ, MexEF-OprN และ MexXY ใน Pseudomonas aeruginosa ท่ีแยกได้จากสุนัขและแมว  เชื้อเหล่าน้ีดื้อยา
ท่ีมีความส าคัญทางคลินิกในระดับสูง เมื่อทดสอบด้วย RT-PCR พบว่าเชื้อทุกตัวมีการแสดงออกของระบบ Mex จ านวน 3 ระบบพร้อมกัน คือ 
MexAB-OprM, MexEF-OprN และ MexXY ไม่พบเชื้อท่ีมีการแสดงออกของระบบ MexCD-OprJ  เมื่อตรวจวัดระดับการแสดงออกของ 
mexF ด้วยเทคนิค quantitative real-time RT-PCR พบว่าระดับการแสดงออกของ mexF มีความหลากหลาย (4-219 เท่า) แต่สูงกว่า 
PAO1 อย่างน้อย 4 เท่า  จากการถอดรหัสพันธุกรรมของยีน mexT พบว่า ยังมีระบบอื่นๆท่ีควบคุมการแสดงออกของระบบ MexEF-OprN 
ผลการวิจัยชี้ให้เห็นถึงความส าคัญของระบบ Mex ต่อการมีส่วนร่วมในการดื้อยาหลายชนิดพร้อมกันของ P. aeruginosa ท่ีแยกได้จากสุนัข
และแมว 
 
ค าส าคัญ: แมว สุนัข ระบบ multidrug efflux  การดื้อยาหลายชนิดพร้อมกัน สูโดโมนาส แอรูจิโนซ่า 
1 ภาควิชาสัตวแพทยสาธารณสุข คณะสัตวแพทยศาสตร์ และหน่วยปฏิบัติการวิจัยความปลอดภัยอาหารทางจุลชีววิทยาและการดื้อยา  
คณะสัตวแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย กรุงเทพฯ 10330 
*ผู้รับผิดชอบบทความ E-mail: rchuanchuen@yahoo.com 
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