

Rabbit as a reservoir of multidrug-resistant *Acinetobacter baumannii* expressing the Ade multidrug efflux pumps

Sirawit Pagdepanichkit¹ Rungtip Chuanchuen^{1*}

Abstract

Acinetobacter baumannii has emerged as a nosocomial pathogen and considered as a major cause of hospital acquired infections. While *A. baumannii* in humans have been extensively studied in various situations, the study of *A. baumannii* in companion animals is still limited. The aim of this study was to examine the presence and antimicrobial resistance profile of *A. baumannii* isolates from companion rabbits. A total of 17 nasal swab from rabbit carcasses were obtained. *A. baumannii* was detected in 23.53% (4/17) of the samples and all the isolates exhibited resistance to chloramphenicol, erythromycin, spectinomycin and trimethoprim. Fifty percent of the isolates (2/4) were multidrug resistance (MDR) *A. baumannii* (ABR601 and ABR604) and produced all the Ade multidrug efflux tested including AdeABC, AdeFGH and AdeIJK. The other 2 isolates, including ABR602 and ABR603, demonstrated different expression profile of the Ade systems i.e. AdeIJK and AdeFGH-AdeIJK, respectively. Of all the isolates, ABR604 and ABR601 were resistant to 12 and 10 out of the 15 antimicrobials tested, respectively. This study indicates the presence of MDR *A. baumannii* in pets other than dogs and cats and highlights the possible role of these animals as reservoirs for the spread of MDR *A. baumannii* to humans, animals and environment.

Keywords: *Acinetobacter baumannii*, Animal, Multidrug efflux pump, Multidrug resistance, Rabbit

¹Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand

*Correspondence: Chuanchuen.R@gmail.com (R. Chuanchuen)

Received September 22, 2020.

Accepted September 29, 2020.

Introduction

Acinetobacter baumannii is a Gram-negative opportunistic pathogens that are frequently involved in nosocomial outbreaks and severely complicate sickness in patients (Kalil *et al.*, 2016). This organism widely distributes in environment and is often associated with wound, urinary tract and respiratory tract infections in animals (Cisneros and Rodriguez-Bano, 2002). Recently, *A. baumannii* infections in companion animals including dogs, cats and horses have been increasingly reported (Abbott *et al.*, 2005; Zordan *et al.*, 2011). As seen in human medicine, the increasing emergence of multidrug resistance (MDR) *A. baumannii* in animals has raised a particular concern for the possible clonal transmission of these bacteria between humans and animals (Endimiani *et al.*, 2011; Smet *et al.*, 2012). Currently, there is an upward trend of bacterial pathogens (including *A. baumannii*) observed in exotic pets and the possible role of these animals as reservoirs for spreading the pathogens according to One Health concept has been suggested (Chomel *et al.*, 2007). Unlike other companion animals, report of *A. baumannii* isolated from rabbit still limited.

One of the most important mechanisms underlying multidrug resistance in *A. baumannii* is overexpression of Ade multidrug efflux systems (Coyne *et al.*, 2011). Three Ade Multidrug efflux pumps, including AdeABC, AdeFGH and AdeIJK, which are in the resistance-nodulation cell division (RND) family have been characterized and reported as a major mechanism responsible for development and spread of MDR *A. baumannii* (Leus *et al.*, 2018). These efflux pumps have been frequently shown as the major contributors to high-level resistance to chloramphenicol, fluoroquinolones, tetracyclines and trimethoprim, however, some other antimicrobials have been recognized as specific substrates for particular Ade efflux pump specifically (e.g. AdeABC for aminoglycosides) (Magnet *et al.*, 2001; Damier-Piolle *et al.*, 2008; Coyne *et al.*, 2010).

Up to date, *A. baumannii* infections in companion animals have been progressively concerned and increasingly reported (Wareth *et al.*, 2019). The information of *A. baumannii* in rabbits has not been reported so far. Therefore, this study aimed to examine antimicrobial susceptibility and expression profile of four *A. baumannii* isolates obtained from rabbit carcasses. The data obtained could provide more sophisticated detail of *A. baumannii* in companion animals.

Materials and Methods

Bacterial isolates: The *A. baumannii* isolates in this study were obtained from nasal swab from rabbit carcasses submitted for pathological examination during September, 2016 to September, 2017 at Pathology Unit, Faculty of Veterinary Science, Chulalongkorn University, Thailand. The organism was isolated and identified by using CHROMagar™ Acinetobacter medium (CHROMagar, Paris, France) followed by Amplified Ribosomal DNA Restriction Analysis (ARDRA) (Dijkshoorn *et al.*, 1998). All the isolates were examined of clonality and confirmed to be non-repetitive strains (data not shown) by using

repetitive sequence based-PCR (rep-PCR) (Amponsin *et al.*, 2003). All the bacterial cultures were grown on Luria Bertani (LB) agar or broth (Difco, BD Diagnostic Systems, MD, USA) and incubated at 37°C in aerobic conditions.

Antimicrobial susceptibility testing: Minimal inhibitory concentrations (MICs) of 15 clinically important antimicrobial agents were determined using two-fold agar dilution method (CLSI, 2015). The antimicrobial agents (with clinical breakpoints in parenthesis) included amikacin (64 µg/ml), aztreonam (32 µg/ml), carbenicillin (64 µg/ml), ceftazidime (32 µg/ml), chloramphenicol (32 µg/ml), ciprofloxacin (4 µg/ml), erythromycin (8 µg/ml), gentamicin (8 µg/ml), kanamycin (64 µg/ml), neomycin (32 µg/ml), piperacillin (128 µg/ml), spectinomycin (128 µg/ml), streptomycin (128 µg/ml), tetracycline (16 µg/ml), trimethoprim (4 µg/ml). All the antimicrobial agents were purchased from Sigma-Aldrich® (MO, USA), *Escherichia coli* ATCC25922, *Pseudomonas aeruginosa* ATCC27853 and *Acinetobacter baumannii* ATCC19606 were used as control strains.

RNA extraction and cDNA synthesis: Total RNA was extracted using Total RNA Extraction Kit Mini (RBCBioscience, New Taipei City, Taiwan) in accordance with manufacturer's instructions. The extracted RNA concentration was determined by using NanoDrop™ 1000 Spectrophotometer (Thermo Fisher Scientific, MA, USA) and treated with DNase I (Thermo Fisher Scientific, MA, USA) to remove remaining DNA. cDNA synthesization was performed using ImProm-II™ Reverse Transcriptase (Promega, WI, USA). The reverse transcription reaction was made in a final volume 20 µl reaction. Each 5 µl reaction comprising 100 ng/µl DNase treated RNA and 1 µl of 10 µM reverse primer of each gene (AdeB_RV_P6, AdeG_Rv_P8, AdeJ_Rv_P10) was prepared and incubated at 70°C for 5 min and quick-chilled on ice for 5 min. The reverse PCR reaction consisted of 4 µl of ImProm-II™ 5X Reaction Buffer, 2 µl of 25 mM MgCl₂, 1 µl of dNTP mix (10 mM each dNTP), 7 µl of nuclease-free water and 1 µl of ImProm-II™ reverse transcriptase. The reverse transcription steps included annealing at 25°C for 5 min, extension at 45°C for 45 min and heat inactivation at 70°C for 15 min. The synthesized cDNA was stored at -20°C until used.

Reverse transcription polymerase chain reaction (RT-PCR): cDNA of each *A. baumannii* isolate was used as DNA template in RT-PCR for detection of three clinically-important Ade efflux pumps (AdeABC, AdeFGH, AdeIJK). All the reactions were conducted in a 50 µl reaction mixture containing 25 µl of 2x KAPA Taq ReadyMix (Kapa Biosystems, MA, USA), 2.5 µl of 10 µM forward primer, 2.5 µl of 10 µM reverse primer, 2 µl of the synthesized cDNA (25 ng/µl), 2.5 µl of 10 µM of each primer (Table 1) and nuclease-free water added to 50 µl. The cycle conditions were performed as follows, a cycle of 94°C for 5 min followed by 30 cycles of 94°C for 45 s, 61-65°C for 45 s, 72°C for 1 min and a cycle of 72°C for 5 min. The RT-PCR products were analyzed on 1.5% agarose gel electrophoresis and

visualized by Bio-Rad Gel Documentation system (Bio-Rad Laboratories, CA, USA). The *A. baumannii* ATCC19606 was used as reference control strain.

PCR amplification and DNA Sequencing: All the PCR amplifications were performed using KAPA Taq ReadyMix (Kapa Biosystems, MA, USA) according to the manufacturer's instructions. The PCR products

from either RT-PCR and conventional PCR were purified by using Nucleospin® Gel and PCR Clean-up (Macherey-Nagel, Düren, Germany) and submitted to First BASE Laboratories (Selangor, Malaysia) for nucleotide sequencing. Whole gene sequences obtained were analyzed by comparison to the sequence of *A. baumannii* reference ATCC19606 available in GenBank® database.

Table 1 Primer used in this study

Primer name	Sequence (5' to 3')	Target gene	Amplicon size (bp)	Reference
AdeB_Fw_P5	CCCTAACAGGACGTATGC	<i>adeB</i>	153	Pagdepanichkit <i>et al.</i> (2016)
AdeB_Rv_P6	GGTGCCTATTCCATTGTGG			
AdeG_Fw_P7	TTATCAGGTCCGTGCACAAG	<i>adeG</i>	245	Pagdepanichkit <i>et al.</i> (2016)
AdeG_Rv_P8	GTGCAGCAATACGTTCAACC			
AdeJ_Fw_P9	GCCGTATGATGCCTGAAGAC	<i>adeJ</i>	346	Pagdepanichkit <i>et al.</i> (2016)
AdeJ_Rv_P10	GCAGCCAAGCAAAGGAATAC			

Results

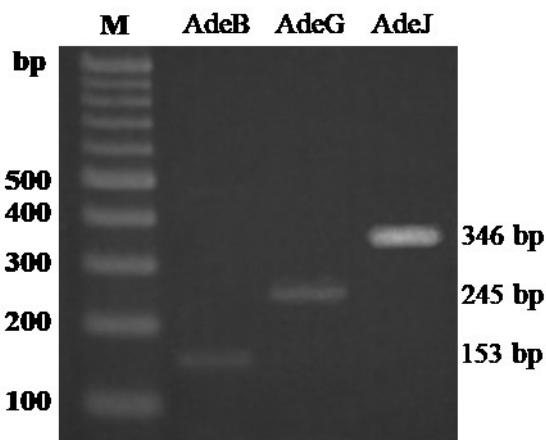
Source of *A. baumannii* isolates in rabbit carcasses: From all the samples from 17 rabbits, four *A. baumannii* (23.53%) were obtained (Table 2). All the rabbits were mixed breed. Three of them were over 2 years of age and the others was 1.5 months old. Medical record showed that two rabbits (2 and 7 years old) were treated with enrofloxacin and marbofloxacin (data not shown). Detail of antibiotic treatment of the other rabbits was not disclosed.

Antimicrobial susceptibility testing: In this study, MDR was defined as being resistant at least 6 antimicrobial drugs (Gu *et al.*, 2007; Poonsuk *et al.*, 2012). All the *A. baumannii* isolates were resistant to chloramphenicol, erythromycin, spectinomycin and trimethoprim. Two isolates, including ABR601 and

ABR604, were resistant to 10 and 12 antimicrobials respectively (Table 2) and defined as MDR *A. baumannii*. The other two isolates (ABR602, ABR603) were resistant to 4 antimicrobials included chloramphenicol, erythromycin, spectinomycin and trimethoprim.

Expression profile of the clinically-important Ade multidrug efflux pumps: The expression profile of the Ade efflux pumps of all clinical isolates is shown in Table 3. The MDR *A. baumannii* (ABR601, ABR604) produced all the Ade efflux pumps tested including AdeABC, AdeFGH and AdeIJK. ABR602 exhibiting the lowest MICs for amikacin (4 µg/ml) and trimethoprim (8 µg/ml) expressed only AdeABC. ABR603 resistant to chloramphenicol and spectinomycin simultaneously expressed AdeFGH and AdeIJK.

Table 2 Antimicrobial susceptibility in the *A. baumannii* isolates obtained from rabbit.


Clinical isolates	MIC (µg/ml) ^a														
	AMK	ATM	CAR	TAZ	CHL	CIP	ERY	GEN	KAN	NEO	PIP	SPE	STR	TET	TMP
ABR601	16	8	8	4	256	64	32	32	512	128	≤2	>1024	1024	>256	64
ABR602	4	16	16	4	128	≤0.06	16	2	4	8	4	128	64	1	8
ABR603	8	16	16	4	256	≤0.06	16	2	4	8	4	128	64	1	16
ABR604	128	32	64	16	512	64	32	32	>512	16	64	128	1024	>256	128

^a, values in boldface indicate MICs that are resistant to each antimicrobials tested.

Abbreviations: AMK, amikacin; ATM, aztreonam; CAR, carbenicillin; TAZ, ceftazidime; CHL, chloramphenicol; CIP, ciprofloxacin; ERY, erythromycin; GEN, gentamicin; KAN, kanamycin; NEO, neomycin; PIP, piperacillin; SPE, spectinomycin; STR, streptomycin; TET, tetracycline; TMP, trimethoprim.

Table 3 Expression of the Ade efflux pumps determined by RT-PCR in the *A. baumannii* isolates.

Clinical isolates	Ade efflux pumps expressed
ABR601	AdeABC, AdeFGH, AdeIJK
ABR602	AdeIJK
ABR603	AdeFGH, AdeIJK
ABR604	AdeABC, AdeFGH, AdeIJK

Figure 1 PCR amplicons of Ade multidrug efflux systems. Lane M, 100 bp molecular weight marker; Lane 2, *adeB*; Lane 3, *adeG* and Lane 4, *adeJ*, respectively.

Discussion

A. baumannii has been recognized as a potential veterinary pathogen and MDR *A. baumannii* isolates have been increasingly reported worldwide (Wareth *et al.*, 2019). In this study, the percentage of *A. baumannii* isolated from rabbits was 23.53%, which was approximately 3-4 times higher than the previous studies (6.5-7%) conducted in other animals (Black *et al.*, 2009; Belmonte *et al.*, 2014). The observation may be also affected by the limited number of the samples obtained in this study. Since rabbits have gained more popularity as pets, this raises the particular concern of their role as reservoirs for MDR *A. baumannii*. ABR604 was isolated from a 7 years old rabbit that was dead due to chronic infection of respiratory tract. *A. baumannii* might be an etiologic cause of death in this animal as the pathogen usually complicates infection of respiratory tract in animals (Francey *et al.*, 2000). ABR601 and ABR604 exhibiting multidrug resistance phenotype were isolated from 2 rabbits that were exposed to fluoroquinolones before death and expressed all the Ade efflux pumps tested. Induction of Ade efflux pump expression by exposure to fluoroquinolones has been demonstrated and the important contribution of fluoroquinolones exposure in multidrug resistance phenotype of *A. baumannii* has been suggested (Zhang *et al.*, 2017). The CDC annual report showed that up to 65% of all the human isolates were MDR *A. baumannii* (Tacconelli *et al.*, 2014). Due to limited number of samples and *A. baumannii* isolates in this study, the comparison is not possible. Therefore, the study in a larger number of *A. baumannii* isolates is required.

A previous study showed that only AdeABC was responsible for the efflux of aminoglycosides in *A. baumannii* (Magnet *et al.*, 2001). Expression of all 3 Ade efflux pumps has been previously shown in MDR *A. baumannii* human clinical isolates with high antimicrobial resistance level (Yoon *et al.*, 2013). However, it was shown that expression of these Ade efflux pump did not always result in high level of resistance to antimicrobials. Coexistence of other resistance mechanisms that were attributed to such high resistance level was suggested (D'Souza *et al.*, 2019). Resistance to most aminoglycosides tested including gentamicin, kanamycin, spectinomycin and

streptomycin in ABR601 and ABR604 was possibly attributed (in part) to expression of AdeABC. All the isolates in this study expressed AdeIJK. This is not surprising because the efflux system is constitutively expressed at low level and contributed to intrinsic resistance to various antimicrobials (e.g. chrolamphenicol, fluoroquinolones, tetracyclines) (Rosenfeld *et al.*, 2012). Further investigation to determine the actual contribution of the Ade systems expressed in the present study (e.g. gene replacement) is recommended.

Based on our knowledge, this is the first report of MDR *A. baumannii* in rabbits in Thailand. Despite the limited number of the *A. baumannii* isolates, the results point out the simultaneous expression of the Ade multidrug efflux pumps in the animal isolates. Further studies are warranted to explore the contribution of the Ade systems to the MDR phenotype. The study to discover efflux pump inhibitors (EPIs) as a promising strategy to fight against MDR *A. baumannii* in animals is suggested.

In conclusion, this study highlights the presence of MDR *A. baumannii* isolates exhibiting expression of AdeABC, AdeFGH and AdeFGH in rabbit carcasses. Expression of all Ade efflux pumps in the rabbit clinical isolates might be responsible for antimicrobial resistance phenotype of these isolates and further studies are warranted to elucidate the role of the Ade efflux systems. Molecular characterization of the Ade efflux systems and other resistance determinants of *A. baumannii* animal isolates is suggested, as seen in other opportunistic pathogens such as *Pseudomonas* spp. Besides, the study of genetic relatedness of the *A. baumannii* isolates from humans and animals is suggested to investigate clonal spread.

Acknowledgements

We thank to Pathology Unit, Faculty of Veterinary Science, Chulalongkorn University for facilitating sample collection. SP is the recipient of the Royal Golden Jubilee Ph.D. Program Scholarship (PHD/0010/2554) by TRF and the 60/40 Study Scholarship, co-funded by Chulalongkorn University and Faculty of Veterinary Science. This study was supported by Rachadapisak Sompoch Research Grant, Chulalongkorn University. It was partially supported

by TRF Basic Research Grant BRG6080014, co-funded by the Thailand Research Fund (TRF), the Faculty of Veterinary Science, and Chulalongkorn University and the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund).

References

Abbott Y, O'Mahony R, Leonard N, Quinn PJ, van der Reijden T, Dijkshoorn L and Fanning S 2005. Characterization of a 2.6 kbp variable region within a class 1 integron found in an *Acinetobacter baumannii* strain isolated from a horse. *J Antimicrob Chemother.* 55(3): 367-370.

Amongsin A, Koowatananukul C, Damrongwatanapokin T and Wongsawang S 2003. DNA fingerprinting of *Leptospira* spp. using a repetitive sequence-based polymerase chain reaction. *Thai J Vet Med.* 33(1): 35-44.

Belmonte O, Pailhories H, Kempf M, Gaultier MP, Lemarie C, Ramont C, Joly-Guillou ML and Eveillard M 2014. High prevalence of closely-related *Acinetobacter baumannii* in pets according to a multicentre study in veterinary clinics, Reunion Island. *Vet. Microbiol.* 170(3-4): 446-450.

Black DM, Rankin SC and King LG 2009. Antimicrobial therapy and aerobic bacteriologic culture patterns in canine intensive care unit patients: 74 dogs (January-June 2006). *J Vet Emerg Crit Care (San Antonio).* 19(5): 489-495.

Chomel BB, Belotto A and Meslin FX 2007. Wildlife, exotic pets, and emerging zoonoses. *Emerg Infect Dis.* 13(1): 6-11.

Cisneros JM and Rodriguez-Bano J 2002. Nosocomial bacteremia due to *Acinetobacter baumannii*: epidemiology, clinical features and treatment. *Clin Microbiol Infect.* 8(11): 687-693.

CLSI 2015. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals: Third Edition. CLSI supplement VET01S. Clinical Laboratory Standards Institute, Wayne, P.A. pp.

Coyne S, Courvalin P and Perichon B 2011. Efflux-mediated antibiotic resistance in *Acinetobacter* spp. *Antimicrob Agents Chemother.* 55(3): 947-953.

Coyne S, Rosenfeld N, Lambert T, Courvalin P and Perichon B 2010. Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in *Acinetobacter baumannii*. *Antimicrob Agents Chemother.* 54(10): 4389-4393.

D'Souza R, Pinto NA, Phuong NL, Higgins PG, Vu TN, Byun JH, Cho YL, Choi JR and Yong D 2019. Phenotypic and Genotypic Characterization of *Acinetobacter* spp. Panel Strains: A Cornerstone to Facilitate Antimicrobial Development. *Front Microbiol.* 10: 559.

Damier-Piolle L, Magnet S, Bremont S, Lambert T and Courvalin P 2008. AdeIJK, a resistance-nodulation-cell division pump effluxing multiple antibiotics in *Acinetobacter baumannii*. *Antimicrob Agents Chemother.* 52(2): 557-562.

Dijkshoorn L, Van Harssehaar B, Tjernberg I, Bouvet PJ and Vaneechoutte M 1998. Evaluation of amplified ribosomal DNA restriction analysis for identification of *Acinetobacter* genomic species. *Syst Appl Microbiol.* 21(1): 33-39.

Endimiani A, Hujer KM, Hujer AM, Bertschy I, Rossano A, Koch C, Gerber V, Francey T, Bonomo RA and Perreten V 2011. *Acinetobacter baumannii* isolates from pets and horses in Switzerland: molecular characterization and clinical data. *J. Antimicrob. Chemother.* 66(10): 2248-2254.

Francey T, Gaschen F, Nicolet J and Burnens AP 2000. The role of *Acinetobacter baumannii* as a nosocomial pathogen for dogs and cats in an intensive care unit. *J Vet Intern Med.* 14(2): 177-183.

Gu B, Tong M, Zhao W, Liu G, Ning M, Pan S and Zhao W 2007. Prevalence and characterization of class I integrons among *Pseudomonas aeruginosa* and *Acinetobacter baumannii* isolates from patients in Nanjing, China. *J. Clin. Microbiol.* 45(1): 241-243.

Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB, Napolitano LM, O'Grady NP, Bartlett JG, Carratala J, El Solh AA, Ewig S, Fey PD, File TM, Jr., Restrepo MI, Roberts JA, Waterer GW, Cruse P, Knight SL and Brozek JL 2016. Executive Summary: Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. *Clin Infect Dis.* 63(5): 575-582.

Leus IV, Weeks JW, Bonifay V, Smith L, Richardson S and Zgurskaya HI 2018. Substrate Specificities and Efflux Efficiencies of RND Efflux Pumps of *Acinetobacter baumannii*. *J Bacteriol.* 200(13): e00049-00018.

Magnet S, Courvalin P and Lambert T 2001. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in *Acinetobacter baumannii* strain BM4454. *Antimicrob Agents Chemother.* 45(12): 3375-3380.

Pagdepanichkit S, Tribuddharat C and Chuanchuen R 2016. Distribution and expression of the Ade multidrug efflux systems in *Acinetobacter baumannii* clinical isolates. *Can J Microbiol.* 62(9): 794-801.

Poonsuk K, Tribuddharat C and Chuanchuen R 2012. Class 1 integrons in *Pseudomonas aeruginosa* and *Acinetobacter baumannii* isolated from clinical isolates. *Southeast Asian J Trop Med Public Health.* 43(2): 376-384.

Rosenfeld N, Bouchier C, Courvalin P and Perichon B 2012. Expression of the resistance-nodulation-cell division pump AdeIJK in *Acinetobacter baumannii* is regulated by AdeN, a TetR-type regulator. *Antimicrob Agents Chemother.* 56(5): 2504-2510.

Smet A, Boyen F, Pasmans F, Butaye P, Martens A, Nemec A, Deschaght P, Vaneechoutte M and Haesebrouck F 2012. OXA-23-producing *Acinetobacter* species from horses: a public health hazard? *J Antimicrob Chemother.* 67(12): 3009-3010.

Tacconelli E, Cataldo MA, Dancer SJ, De Angelis G, Falcone M, Frank U, Kahlmeter G, Pan A, Petrosillo N, Rodriguez-Bano J, Singh N, Venditti M, Yokoe DS, Cookson B and European Society of Clinical M 2014. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative

bacteria in hospitalized patients. *Clin Microbiol Infect.* 20 Suppl 1: 1-55.

Wareth G, Neubauer H and Sprague LD 2019. *Acinetobacter baumannii* - a neglected pathogen in veterinary and environmental health in Germany. *Vet Res Commun.* 43(1): 1-6.

Yoon EJ, Courvalin P and Grillot-Courvalin C 2013. RND-type efflux pumps in multidrug-resistant clinical isolates of *Acinetobacter baumannii*: major role for AdeABC overexpression and AdeRS mutations. *Antimicrob Agents Chemother.* 57(7): 2989-2995.

Zhang TT, Wang M, Xie YX, Li XP, Dong ZH, Liu YH, Wang L, Yang M, Song H, Cao H and Cao W 2017. Active efflux pump *adeB* is involved in multidrug resistance of *Acinetobacter baumannii* induced by antibacterial agents. *Experimental and Therapeutic Medicine.* 13(4): 1538-1546.

Zordan S, Prenger-Berninghoff E, Weiss R, van der Reijden T, van den Broek P, Baljer G and Dijkshoorn L 2011. Multidrug-resistant *Acinetobacter baumannii* in veterinary clinics, Germany. *Emerg. Infect. Dis.* 17(9): 1751-1754.